Re50:读论文 Large Language Models Struggle to Learn Long-Tail Knowledge
诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类
论文名称:Large Language Models Struggle to Learn Long-Tail Knowledge
ArXiv网址:https://arxiv.org/abs/2211.08411
官方GitHub项目(代码和实体):https://github.com/nkandpa2/long_tail_knowledge
本文是2023年ICML论文,主要关注LLM无法记忆长尾知识的问题。
检测方式是让LLM基于事实回答问题(4-shot closed-book QA evaluations),看准确率与预训练语料中问题相关文档数的关系。文档中包含问题里的实体对,就算相关文档。
增大模型确实能缓解长尾问题,但是要求规模指数级提升才能匹配数据集出现频率的一点点提升。还是用检索增强的方式比较好。但是检索系统的方法本身也需要有相关文档才行。
预训练语料(用于链接实体和找相关文档):ROOTS, The Pile, C4, OpenWebText, and Wikipedia
(话说本文提到没有研究跨语言知识。我感觉这一点也挺值得研究的)
QA数据集:Natural Questions & TriviaQA
模型:
Transformer decoder-only LMs:
GPT-Neo
BLOOM-176B BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
GPT-3
文章目录
- 1. 研究背景&核心观察结果
- 2. 实验
- 1. 实验设置
- 2. 观察实验结果
- 3. 解决方案
1. 研究背景&核心观察结果
LLM难以记忆长尾知识:

(相关文档数量指数分箱,取QA准确率平均值)
2. 实验
1. 实验设置
1. 找相关文档:
事实QA数据集→从预训练文档里找出相关文档(如果问答对中的两个实体都出现,就算相关文档)

实体链接工具:DBpedia Spotlight Entity Linker1
2. QA:

其他示例样本数得到的结果差别不大
解码方案:贪心解码
2. 观察实验结果
(TriviaQA在BLOOM上的结果图Figure 1我放在第一节了)




证明相关文档必须要同时含有问答中的实体的必要性:
用问题实体或回答实体,可以得到与同时使用中相似的结果;但是如果去掉问答都有的情况,就没有这样的表现了。说明其实模型学习靠的是问答都有的情况

人工结果和LM结果趋势相反
对LM预测结果出现原因的分析:
对比实验,证明去掉相关文档重新训练LM后准确率会下降:

3. 解决方案
scale数据集
没啥用,各个数据集的支持信息都差不多:

scale模型
想法是好的,但是需要的增量太大了


调整训练目标
改为encourage memorization
增大训练epoch数……等等
检索增强
直接用相关文档,效果能得到大幅度提升:

用BM25算法实现检索:
果然表现好起来了


(2011 I-Semantics) DBpedia spotlight: shedding light on the web of documents ↩︎
相关文章:
Re50:读论文 Large Language Models Struggle to Learn Long-Tail Knowledge
诸神缄默不语-个人CSDN博文目录 诸神缄默不语的论文阅读笔记和分类 论文名称:Large Language Models Struggle to Learn Long-Tail Knowledge ArXiv网址:https://arxiv.org/abs/2211.08411 官方GitHub项目(代码和实体)…...
Spring IOC - Bean的生命周期之依赖注入
在Spring启动流程中,创建的factoryBean是DefaultListableBeanFactory,其类图如下所示: 可以看到其直接父类是AbstractAutoireCapableBeanFactory,他主要负责完成Bean的自动装配和创建工作。 具体来说,AbstractAutowire…...
Android Termux安装MySQL,内网穿透实现公网远程访问
文章目录 前言1.安装MariaDB2.安装cpolar内网穿透工具3. 创建安全隧道映射mysql4. 公网远程连接5. 固定远程连接地址 前言 Android作为移动设备,尽管最初并非设计为服务器,但是随着技术的进步我们可以将Android配置为生产力工具,变成一个随身…...
OpenCV快速入门:像素操作和图像变换
文章目录 前言1. 像素操作1.1 像素统计1.2 两个图像之间的操作1.2.1 图像加法操作1.2.3 图像加权混合 1.3 二值化1.4 LUT(查找表)1.4.1 查找表原理1.4.2 代码演示 2 图像变换2.1 旋转操作2.1.1 旋转的基本原理2.1.2 代码实现 2.2 缩放操作2.3 平移操作2.…...
Django 路由配置(二)
一、路由 就是根据用户请求的URL链接来判断对应的出来程序,并返回处理结果,也是就是URL和django的视图建立映射关系. 二、Django请求页面的步骤 1、首先Django确定要使用的根URLconf模块,通过ROOT_URLCONF来设置,在settings.py配置…...
电子学会C/C++编程等级考试2022年06月(一级)真题解析
C/C++等级考试(1~8级)全部真题・点这里 第1题:倒序输出 依次输入4个整数a、b、c、d,将他们倒序输出,即依次输出d、c、b、a这4个数。 时间限制:1000 内存限制:65536输入 一行4个整数a、b、c、d,以空格分隔。 0 < a,b,c,d < 108输出 一行4个整数d、c、b、a,整数之…...
【C++】使用std::vector()函数实现矩阵的加、减、点乘、点除等运算
本文通过vector()函数表示矩阵的形式,对 加、减、点乘、点除等运算进行编码和运行,相应结果如下文所述。 #include <iostream> #include <vector>using namespace std;// 矩阵加法 vector<vector<int>> …...
【python】直方图正则化详解和示例
直方图正则化(Histogram Normalization)是一种图像增强技术,目的是改变图像的直方图以改善图像的质量。具体来说,它通过将图像的直方图调整为指定的形状,以增强图像的对比度和亮度。 直方图正则化的基本步骤如下&…...
c语言:矩阵交换
题目: 代码和思路: #define _CRT_SECURE_NO_WARNINGS #include<stdio.h>int main() {int n 0;int m 0;int arr[10][10] { 0 }; // 输入行和列scanf("%d%d", &n, &m);int i 0;int j 0;//读取数组for (i 0; i < n; i)…...
【论文阅读】基于隐蔽带宽的汽车控制网络鲁棒认证(一)
文章目录 Abstract第一章 引言1.1 问题陈述1.2 研究假设1.3 贡献1.4 大纲 第二章 背景和相关工作2.1 CAN安全威胁2.1.1 CAN协议设计2.1.2 CAN网络攻击2.1.3 CAN应用攻击 2.2 可信执行2.2.1 软件认证2.2.2 消息身份认证2.2.3 可信执行环境2.2.4 Sancus2.2.5 VulCAN 2.3 侧信道攻…...
暖阳脚本_ 将Agent技术的灵活性引入RPA,清华等发布自动化智能体ProAgent
RPA暖阳脚本 近日,来自清华大学的研究人员联合面壁智能、中国人民大学、MIT、CMU 等机构共同发布了新一代流程自动化范式 “智能体流程自动化” Agentic Process Automation(APA),结合大模型智能体帮助人类进行工作流构建&#x…...
JUnit 单元自动化
一、Junit 是什么? Junit 是 Java 中用于单元测试的框架。使用 Junit 能让我们快速高效的完成单元测试。 自动化测试:JUnit提供了自动化测试的能力,开发人员可以编写一次测试用例,然后通过简单的命令或集成到持续集成工具中进行…...
Vue3 源码解读系列(十一)——插槽 slot
slot 插槽的实现实际上就是一种 延时渲染,把父组件中编写的插槽内容保存到一个对象上,并且把具体渲染 DOM 的代码用函数的方式封装,然后在子组件渲染的时候,根据插槽名在对象中找到对应的函数,然后执行这些函数做真正的…...
[github初学者教程] 分支管理-以及问题解决
作者:20岁爱吃必胜客(坤制作人),近十年开发经验, 跨域学习者,目前于新西兰奥克兰大学攻读IT硕士学位。荣誉:阿里云博客专家认证、腾讯开发者社区优质创作者,在CTF省赛校赛多次取得好成绩。跨领域…...
见面礼——图论
给定一个 n 个点 n 条边的无向图,你需要求有多少种选择图上的一个点 p 和一条边 (x,y) 的方案,使得删去 (x,y) 后图变成一棵树,且这棵树以 p 为根时每个节点的儿子个数均不超过 3。保证至少存在一种这样的方案。 Input 输入的第一行一个整数…...
【论文阅读】SPARK:针对视觉跟踪的空间感知在线增量攻击
SPARK: Spatial-Aware Online Incremental Attack Against Visual Tracking introduction 在本文中,我们确定了视觉跟踪对抗性攻击的一个新任务:在线生成难以察觉的扰动,误导跟踪器沿着不正确的(无目标攻击,UA&#x…...
MR混合现实教学系统在汽车检修与维护课堂教学中的应用
传统的汽车检修与维护课堂教学主要依赖教师口头讲解和黑板演示,这种方式存在一定的局限性。首先,对于一些复杂的机械结构和操作过程,教师难以生动形象地展示给学生。其次,学生无法直接观察到实际操作中的细节和注意事项࿰…...
CentOS7安装xvfb,解决服务器没有X-Server的问题
Linux服务器上一般没有图形界面,但是有时候有些软件又需要图形界面.比如oracle,自动化测试(puppeteer).运行的时候会提示没有没有X服务. 这时候一般不会去特地装图形界面.这个时候就要用xvfb来创建虚拟图形窗口. xvfb介绍 Xvfb(X Virtual Frame Buffer)是基于X Window的虚拟服…...
快速集成Skywalking 9(Windows系统、JavaAgent、Logback)
目录 一、Skywalking简介二、下载Skywalking服务端三、安装Skywalking服务端3.1 解压安装包3.2 启动Skywalking 四、关于Skywalking服务端更多配置五、Java应用集成skywalking-agent.jar5.1 下载SkyWalking Java Agent5.2 集成JavaAgent5.3 Logback集成Skywalking5.4 集成效果 …...
起立科技(起鸿)在第25届高交会上展示透明OLED技术创新
第二十五届中国国际高新技术成果交易会 日期:2023年11月15日 地点:福田会展中心7号馆 深圳,2023年11月15日 — 起鸿科技,作为透明OLED领域的引领者,于今日参展了第二十五届中国国际高新技术成果交易会。这一展会将汇…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...
