当前位置: 首页 > news >正文

Re50:读论文 Large Language Models Struggle to Learn Long-Tail Knowledge

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文名称:Large Language Models Struggle to Learn Long-Tail Knowledge

ArXiv网址:https://arxiv.org/abs/2211.08411

官方GitHub项目(代码和实体):https://github.com/nkandpa2/long_tail_knowledge

本文是2023年ICML论文,主要关注LLM无法记忆长尾知识的问题。
检测方式是让LLM基于事实回答问题(4-shot closed-book QA evaluations),看准确率与预训练语料中问题相关文档数的关系。文档中包含问题里的实体对,就算相关文档。
增大模型确实能缓解长尾问题,但是要求规模指数级提升才能匹配数据集出现频率的一点点提升。还是用检索增强的方式比较好。但是检索系统的方法本身也需要有相关文档才行。

预训练语料(用于链接实体和找相关文档):ROOTS, The Pile, C4, OpenWebText, and Wikipedia
(话说本文提到没有研究跨语言知识。我感觉这一点也挺值得研究的)

QA数据集:Natural Questions & TriviaQA

模型:
Transformer decoder-only LMs:
GPT-Neo
BLOOM-176B BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
GPT-3

文章目录

  • 1. 研究背景&核心观察结果
  • 2. 实验
    • 1. 实验设置
    • 2. 观察实验结果
    • 3. 解决方案

1. 研究背景&核心观察结果

LLM难以记忆长尾知识:
在这里插入图片描述

(相关文档数量指数分箱,取QA准确率平均值)

2. 实验

1. 实验设置

1. 找相关文档:
事实QA数据集→从预训练文档里找出相关文档(如果问答对中的两个实体都出现,就算相关文档)

在这里插入图片描述

实体链接工具:DBpedia Spotlight Entity Linker1

2. QA:
在这里插入图片描述
其他示例样本数得到的结果差别不大

解码方案:贪心解码

2. 观察实验结果

(TriviaQA在BLOOM上的结果图Figure 1我放在第一节了)
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

证明相关文档必须要同时含有问答中的实体的必要性:
用问题实体或回答实体,可以得到与同时使用中相似的结果;但是如果去掉问答都有的情况,就没有这样的表现了。说明其实模型学习靠的是问答都有的情况
在这里插入图片描述

人工结果和LM结果趋势相反

对LM预测结果出现原因的分析
对比实验,证明去掉相关文档重新训练LM后准确率会下降:
在这里插入图片描述

3. 解决方案

scale数据集
没啥用,各个数据集的支持信息都差不多:
在这里插入图片描述

scale模型
想法是好的,但是需要的增量太大了
在这里插入图片描述

在这里插入图片描述

调整训练目标
改为encourage memorization
增大训练epoch数……等等

检索增强
直接用相关文档,效果能得到大幅度提升:

在这里插入图片描述

用BM25算法实现检索:
果然表现好起来了
在这里插入图片描述

在这里插入图片描述


  1. (2011 I-Semantics) DBpedia spotlight: shedding light on the web of documents ↩︎

相关文章:

Re50:读论文 Large Language Models Struggle to Learn Long-Tail Knowledge

诸神缄默不语-个人CSDN博文目录 诸神缄默不语的论文阅读笔记和分类 论文名称:Large Language Models Struggle to Learn Long-Tail Knowledge ArXiv网址:https://arxiv.org/abs/2211.08411 官方GitHub项目(代码和实体)&#xf…...

Spring IOC - Bean的生命周期之依赖注入

在Spring启动流程中,创建的factoryBean是DefaultListableBeanFactory,其类图如下所示: 可以看到其直接父类是AbstractAutoireCapableBeanFactory,他主要负责完成Bean的自动装配和创建工作。 具体来说,AbstractAutowire…...

Android Termux安装MySQL,内网穿透实现公网远程访问

文章目录 前言1.安装MariaDB2.安装cpolar内网穿透工具3. 创建安全隧道映射mysql4. 公网远程连接5. 固定远程连接地址 前言 Android作为移动设备,尽管最初并非设计为服务器,但是随着技术的进步我们可以将Android配置为生产力工具,变成一个随身…...

OpenCV快速入门:像素操作和图像变换

文章目录 前言1. 像素操作1.1 像素统计1.2 两个图像之间的操作1.2.1 图像加法操作1.2.3 图像加权混合 1.3 二值化1.4 LUT(查找表)1.4.1 查找表原理1.4.2 代码演示 2 图像变换2.1 旋转操作2.1.1 旋转的基本原理2.1.2 代码实现 2.2 缩放操作2.3 平移操作2.…...

Django 路由配置(二)

一、路由 就是根据用户请求的URL链接来判断对应的出来程序,并返回处理结果,也是就是URL和django的视图建立映射关系. 二、Django请求页面的步骤 1、首先Django确定要使用的根URLconf模块,通过ROOT_URLCONF来设置,在settings.py配置…...

电子学会C/C++编程等级考试2022年06月(一级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:倒序输出 依次输入4个整数a、b、c、d,将他们倒序输出,即依次输出d、c、b、a这4个数。 时间限制:1000 内存限制:65536输入 一行4个整数a、b、c、d,以空格分隔。 0 < a,b,c,d < 108输出 一行4个整数d、c、b、a,整数之…...

【C++】使用std::vector()函数实现矩阵的加、减、点乘、点除等运算

本文通过vector&#xff08;&#xff09;函数表示矩阵的形式&#xff0c;对 加、减、点乘、点除等运算进行编码和运行&#xff0c;相应结果如下文所述。 #include <iostream> #include <vector>using namespace std;// 矩阵加法 vector<vector<int>> …...

【python】直方图正则化详解和示例

直方图正则化&#xff08;Histogram Normalization&#xff09;是一种图像增强技术&#xff0c;目的是改变图像的直方图以改善图像的质量。具体来说&#xff0c;它通过将图像的直方图调整为指定的形状&#xff0c;以增强图像的对比度和亮度。 直方图正则化的基本步骤如下&…...

c语言:矩阵交换

题目&#xff1a; 代码和思路&#xff1a; #define _CRT_SECURE_NO_WARNINGS #include<stdio.h>int main() {int n 0;int m 0;int arr[10][10] { 0 }; // 输入行和列scanf("%d%d", &n, &m);int i 0;int j 0;//读取数组for (i 0; i < n; i)…...

【论文阅读】基于隐蔽带宽的汽车控制网络鲁棒认证(一)

文章目录 Abstract第一章 引言1.1 问题陈述1.2 研究假设1.3 贡献1.4 大纲 第二章 背景和相关工作2.1 CAN安全威胁2.1.1 CAN协议设计2.1.2 CAN网络攻击2.1.3 CAN应用攻击 2.2 可信执行2.2.1 软件认证2.2.2 消息身份认证2.2.3 可信执行环境2.2.4 Sancus2.2.5 VulCAN 2.3 侧信道攻…...

暖阳脚本_ 将Agent技术的灵活性引入RPA,清华等发布自动化智能体ProAgent

RPA暖阳脚本 近日&#xff0c;来自清华大学的研究人员联合面壁智能、中国人民大学、MIT、CMU 等机构共同发布了新一代流程自动化范式 “智能体流程自动化” Agentic Process Automation&#xff08;APA&#xff09;&#xff0c;结合大模型智能体帮助人类进行工作流构建&#x…...

JUnit 单元自动化

一、Junit 是什么&#xff1f; Junit 是 Java 中用于单元测试的框架。使用 Junit 能让我们快速高效的完成单元测试。 自动化测试&#xff1a;JUnit提供了自动化测试的能力&#xff0c;开发人员可以编写一次测试用例&#xff0c;然后通过简单的命令或集成到持续集成工具中进行…...

Vue3 源码解读系列(十一)——插槽 slot

slot 插槽的实现实际上就是一种 延时渲染&#xff0c;把父组件中编写的插槽内容保存到一个对象上&#xff0c;并且把具体渲染 DOM 的代码用函数的方式封装&#xff0c;然后在子组件渲染的时候&#xff0c;根据插槽名在对象中找到对应的函数&#xff0c;然后执行这些函数做真正的…...

[github初学者教程] 分支管理-以及问题解决

作者&#xff1a;20岁爱吃必胜客&#xff08;坤制作人&#xff09;&#xff0c;近十年开发经验, 跨域学习者&#xff0c;目前于新西兰奥克兰大学攻读IT硕士学位。荣誉&#xff1a;阿里云博客专家认证、腾讯开发者社区优质创作者&#xff0c;在CTF省赛校赛多次取得好成绩。跨领域…...

见面礼——图论

给定一个 n 个点 n 条边的无向图&#xff0c;你需要求有多少种选择图上的一个点 p 和一条边 (x,y) 的方案&#xff0c;使得删去 (x,y) 后图变成一棵树&#xff0c;且这棵树以 p 为根时每个节点的儿子个数均不超过 3。保证至少存在一种这样的方案。 Input 输入的第一行一个整数…...

【论文阅读】SPARK:针对视觉跟踪的空间感知在线增量攻击

SPARK: Spatial-Aware Online Incremental Attack Against Visual Tracking introduction 在本文中&#xff0c;我们确定了视觉跟踪对抗性攻击的一个新任务&#xff1a;在线生成难以察觉的扰动&#xff0c;误导跟踪器沿着不正确的&#xff08;无目标攻击&#xff0c;UA&#x…...

MR混合现实教学系统在汽车检修与维护课堂教学中的应用

传统的汽车检修与维护课堂教学主要依赖教师口头讲解和黑板演示&#xff0c;这种方式存在一定的局限性。首先&#xff0c;对于一些复杂的机械结构和操作过程&#xff0c;教师难以生动形象地展示给学生。其次&#xff0c;学生无法直接观察到实际操作中的细节和注意事项&#xff0…...

CentOS7安装xvfb,解决服务器没有X-Server的问题

Linux服务器上一般没有图形界面,但是有时候有些软件又需要图形界面.比如oracle,自动化测试(puppeteer).运行的时候会提示没有没有X服务. 这时候一般不会去特地装图形界面.这个时候就要用xvfb来创建虚拟图形窗口. xvfb介绍 Xvfb(X Virtual Frame Buffer)是基于X Window的虚拟服…...

快速集成Skywalking 9(Windows系统、JavaAgent、Logback)

目录 一、Skywalking简介二、下载Skywalking服务端三、安装Skywalking服务端3.1 解压安装包3.2 启动Skywalking 四、关于Skywalking服务端更多配置五、Java应用集成skywalking-agent.jar5.1 下载SkyWalking Java Agent5.2 集成JavaAgent5.3 Logback集成Skywalking5.4 集成效果 …...

起立科技(起鸿)在第25届高交会上展示透明OLED技术创新

第二十五届中国国际高新技术成果交易会 日期&#xff1a;2023年11月15日 地点&#xff1a;福田会展中心7号馆 深圳&#xff0c;2023年11月15日 — 起鸿科技&#xff0c;作为透明OLED领域的引领者&#xff0c;于今日参展了第二十五届中国国际高新技术成果交易会。这一展会将汇…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...