传递函数的推导和理解
传递函数的推导和理解
假设有一个线性系统,在一般情况下,它的激励 x ( t ) x(t) x(t)与响应 y ( t ) y(t) y(t)所满足的的关系,可用下列微分方程来表示:
a n y ( n ) + a n − 1 y ( n − 1 ) + a n − 2 y ( n − 2 ) + ⋯ + a 1 y ′ + a 0 y = b m x ( m ) + b m − 1 x ( m − 1 ) + b m − 2 x ( m − 2 ) + ⋯ + b 1 x ′ + b 0 x (1) \begin{array}{l}{a_n}{y^{(n)}} + {a_{n - 1}}{y^{(n - 1)}} + {a_{n - 2}}{y^{(n - 2)}} + \cdots + {a_1}y' + {a_0}y\\ = {b_m}{x^{({\rm{m}})}} + {b_{m - 1}}{x^{({\rm{m - 1}})}} + {b_{m - 2}}{x^{({\rm{m - 2}})}} + \cdots + {b_1}x' + {b_0}x\end{array}\tag1 any(n)+an−1y(n−1)+an−2y(n−2)+⋯+a1y′+a0y=bmx(m)+bm−1x(m−1)+bm−2x(m−2)+⋯+b1x′+b0x(1)
其中, a 0 , a 1 , ⋯ , a n , b 0 , b 1 , ⋯ , b m {a_0},{a_1}, \cdots ,{a_n},{b_0},{b_1}, \cdots ,{b_m} a0,a1,⋯,an,b0,b1,⋯,bm均为常数, m , n m,n m,n为正整数, n ≥ m n \ge m n≥m
设 L [ y ( t ) ] = Y ( s ) , L [ x ( t ) ] = X ( s ) \mathscr{L}[y(t)]=Y(s),\mathscr{L}[x(t)]=X(s) L[y(t)]=Y(s),L[x(t)]=X(s),根据Laplace变换的微分性质,有
L [ a k y ( k ) ] = a k s k Y ( s ) − a k [ s k − 1 y ( 0 ) + s k − 2 y ′ ( 0 ) + s k − 3 y ′ ′ ( 0 ) + ⋯ + s k − ( k − 1 ) y ( k − 2 ) ( 0 ) + s 0 y ( k − 1 ) ( 0 ) ] ( k = 0 , 1 , 2 , ⋯ , n ) {\mathscr L}[{a_k}{y^{(k)}}] = {a_k}{s^k}Y(s) - {a_k}[{s^{k - 1}}y(0) + {s^{k - 2}}y'(0) + {s^{k - 3}}y''(0) + \cdots + {s^{k - (k - 1)}}{y^{(k - 2)}}(0) + {s^0}{y^{(k - 1)}}(0)]\\(k = 0,1,2, \cdots ,n) L[aky(k)]=akskY(s)−ak[sk−1y(0)+sk−2y′(0)+sk−3y′′(0)+⋯+sk−(k−1)y(k−2)(0)+s0y(k−1)(0)](k=0,1,2,⋯,n)
L [ b k x ( k ) ] = b k s k X ( s ) − b k [ s k − 1 x ( 0 ) + s k − 2 x ′ ( 0 ) + s k − 3 x ′ ′ ( 0 ) + ⋯ + s k − ( k − 1 ) x ( k − 2 ) ( 0 ) + s 0 x ( k − 1 ) ( 0 ) ] ( k = 0 , 1 , 2 , ⋯ , m ) {\mathscr L}[{b_k}{x^{(k)}}] = {b_k}{s^k}X(s) - {b_k}[{s^{k - 1}}x(0) + {s^{k - 2}}x'(0) + {s^{k - 3}}x''(0) + \cdots + {s^{k - (k - 1)}}{x^{(k - 2)}}(0) + {s^0}{x^{(k - 1)}}(0)] \\(k = 0,1,2, \cdots ,m) L[bkx(k)]=bkskX(s)−bk[sk−1x(0)+sk−2x′(0)+sk−3x′′(0)+⋯+sk−(k−1)x(k−2)(0)+s0x(k−1)(0)](k=0,1,2,⋯,m)
对式子(1)两边进行Laplace变换并通过整理,可得:
D ( s ) Y ( s ) − M h y ( s ) = M ( s ) X ( s ) − M h x ( s ) D(s)Y(s) - {M_{hy}}(s) = M(s)X(s) - {M_{hx}}(s) D(s)Y(s)−Mhy(s)=M(s)X(s)−Mhx(s)
即:
Y ( s ) = M ( s ) D ( s ) X ( s ) + M h y ( s ) − M h x ( s ) D ( s ) (2) Y(s) = \frac{{M(s)}}{{D(s)}}X(s) + \frac{{{M_{hy}}(s) - {M_{hx}}(s)}}{{D(s)}}\tag2 Y(s)=D(s)M(s)X(s)+D(s)Mhy(s)−Mhx(s)(2)
其中,
D ( s ) = a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 , D(s) = {a_n}{s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}, D(s)=ansn+an−1sn−1+⋯+a1s+a0,
M ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 , M(s) = {b_m}{s^m} + {b_{m - 1}}{s^{m - 1}} + \cdots + {b_1}s + {b_0}, M(s)=bmsm+bm−1sm−1+⋯+b1s+b0,
M h y ( s ) = a n y ( 0 ) s n − 1 + [ a n y ′ ( 0 ) + a n − 1 y ( 0 ) ] s n − 2 + [ a n y ′ ′ ( 0 ) + a n − 1 y ′ ( 0 ) + a n − 2 y ( 0 ) ] s n − 3 + ⋯ + [ a n y ( n − 2 ) ( 0 ) + a n − 1 y ( n − 3 ) ( 0 ) + ⋯ + a 2 y ( 0 ) ] s + [ a n y ( n − 1 ) ( 0 ) + a n − 1 y ( n − 2 ) ( 0 ) + ⋯ + a 1 y ( 0 ) ] , {M_{hy}}(s) = {a_n}y(0){s^{n - 1}} + [{a_n}y'(0) + {a_{n - 1}}y(0)]{s^{n - 2}} + [{a_n}y''(0) + {a_{n - 1}}y'(0) + {a_{n - 2}}y(0)]{s^{n - 3}} + \cdots + [{a_n}{y^{(n - 2)}}(0) + {a_{n - 1}}{y^{(n - 3)}}(0) + \cdots + {a_2}y(0)]s + [{a_n}{y^{(n - 1)}}(0) + {a_{n - 1}}{y^{(n - 2)}}(0) + \cdots + {a_1}y(0)], Mhy(s)=any(0)sn−1+[any′(0)+an−1y(0)]sn−2+[any′′(0)+an−1y′(0)+an−2y(0)]sn−3+⋯+[any(n−2)(0)+an−1y(n−3)(0)+⋯+a2y(0)]s+[any(n−1)(0)+an−1y(n−2)(0)+⋯+a1y(0)],
M h x ( s ) = b m x ( 0 ) s m − 1 + [ b m x ′ ( 0 ) + b m − 1 x ( 0 ) ] s m − 2 + [ b m x ′ ′ ( 0 ) + b m − 1 x ′ ( 0 ) + b m − 2 x ( 0 ) ] s m − 3 + ⋯ + [ b m x ( m − 2 ) ( 0 ) + b m − 1 x ( m − 3 ) ( 0 ) + ⋯ + b 2 x ( 0 ) ] s + [ b m x ( m − 1 ) ( 0 ) + b m − 1 x ( n − 2 ) ( 0 ) + ⋯ + b 1 x ( 0 ) ] , {M_{hx}}(s) = {b_m}x(0){s^{m - 1}} + [{b_m}x'(0) + {b_{m - 1}}x(0)]{s^{m - 2}} + [{b_m}x''(0) + {b_{m - 1}}x'(0) + {b_{m - 2}}x(0)]{s^{m - 3}} + \cdots + [{b_m}{x^{(m - 2)}}(0) + {b_{m - 1}}{x^{(m - 3)}}(0) + \cdots + {b_2}x(0)]s + [{b_m}{x^{(m - 1)}}(0) + {b_{m - 1}}{x^{(n - 2)}}(0) + \cdots + {b_1}x(0)], Mhx(s)=bmx(0)sm−1+[bmx′(0)+bm−1x(0)]sm−2+[bmx′′(0)+bm−1x′(0)+bm−2x(0)]sm−3+⋯+[bmx(m−2)(0)+bm−1x(m−3)(0)+⋯+b2x(0)]s+[bmx(m−1)(0)+bm−1x(n−2)(0)+⋯+b1x(0)],
若令 G ( s ) = M ( s ) G ( s ) G(s) = \frac{{M(s)}}{{G(s)}} G(s)=G(s)M(s), G h ( s ) = M h y ( s ) − M h x ( s ) D ( s ) {G_h}(s) = \frac{{{M_{hy}}(s) - {M_{hx}}(s)}}{{D(s)}} Gh(s)=D(s)Mhy(s)−Mhx(s),则式(2)可写为:
Y ( s ) = G ( s ) X ( s ) + G h ( s ) (3) Y(s) = G(s)X(s) + {G_h}(s)\tag3 Y(s)=G(s)X(s)+Gh(s)(3)
式子中:
G ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 (4) G(s) = \frac{{{b_m}{s^m} + {b_{m - 1}}{s^{m - 1}} + \cdots + {b_1}s + {b_0}}}{{{a_n}{s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}}}\tag4 G(s)=ansn+an−1sn−1+⋯+a1s+a0bmsm+bm−1sm−1+⋯+b1s+b0(4)
我们称 G ( s ) G(s) G(s)为系统的传递函数。它表达了系统本身的特性,而与激励及系统的初始状态无关。
但是 G h ( s ) G_{h}(s) Gh(s)则由激励和系统本身的初值条件所决定。若这些初始条件全为0,即 G h ( s ) G_{h}(s) Gh(s)=0时,式子(3)可写成:
Y ( s ) = G ( s ) X ( s ) 或 G ( s ) = Y ( s ) X ( s ) (5) \begin{array}{l}Y(s) = G(s)X(s) 或 G(s) = \frac{{Y(s)}}{{X(s)}}\end{array}\tag5 Y(s)=G(s)X(s)或G(s)=X(s)Y(s)(5)
式子(5)表明,在零初值条件下,系统的传递函数等于其响应的Laplace变换与其激励的Laplace变换之比。
因此,当我们知道系统的传递函数后,就可以由系统的激励按照式子(3)或式子(5)求出其响应的拉普拉斯变换 Y ( s ) Y(s) Y(s),再通过求逆变换可得其响应 y ( t ) y(t) y(t)。
系统的激励 x ( t ) x(t) x(t),系统的响应 y ( t ) y(t) y(t),以及它们的拉普拉斯变换 X ( s ) X(s) X(s), Y ( s ) Y(s) Y(s)和传递函数的关系如图1所示。
图1 系统激励、响应以及传递函数之间的关系
需要说明的是,传递函数不表明系统的物理性质。许多性质不同的物理系统,可以有相同的传递函数。而传递函数不同的物理系统,即使系统的激励相同,其响应也是不相同的,因此,对传递函数的分析和研究,就能统一处理各种物理性质不同的额线性系统。
简而言之,通过对系统微分方程进行拉普拉斯变换,推导出了系统的传递函数 G ( s ) G(s) G(s)。
相关文章:

传递函数的推导和理解
传递函数的推导和理解 假设有一个线性系统,在一般情况下,它的激励 x ( t ) x(t) x(t)与响应 y ( t ) y(t) y(t)所满足的的关系,可用下列微分方程来表示: a n y ( n ) a n − 1 y ( n − 1 ) a n − 2 y ( n − 2 ) ⋯ a 1 y…...

STM32 SPI
SPI介绍 SPI是Serial Pepheral interface缩写,串行外围设备接口。 SPI接口是一种高速的全双工同步通信总线,已经广泛应用在众多MCU、存储芯片、AD转换器和LCD之间。大部分STM32有3个SPI接口,本实验使用的是SPI1。 SPI同一时刻既能发送数据&…...

Linux系统编程 day02 vim、gcc、库的制作与使用
Linux系统编程 day02 vim、gcc、库的制作与使用 01. vim0101. 命令模式下的操作0102. 切换到文本输入模式0103. 末行模式下的操作0104. vim的配置文件 02. gcc03. 库的制作与使用0301. 静态库的制作与使用0302. 动态库(共享库)的制作与使用 01. vim vim是一个编辑器࿰…...

Mistral 7B 比Llama 2更好的开源大模型 (四)
Mistral 7B在平衡高性能和保持大型语言模型高效的目标方面迈出了重要的一步。通过我们的工作,我们的目标是帮助社区创建更实惠、更高效、更高性能的语言模型,这些模型可以在广泛的现实世界应用程序中使用。 Mistral 7B在实践中,对于16K和W=4096的序列长度,对FlashAttentio…...

相似基因序列问题 ——查找
【题目背景】 生物的遗传物质存在个体间或种群水平的差异,这样的差异被称为遗传变异。突变及基因重组等因素都会导致遗传变异。尽管亲代在将其遗传信息传递给子代时会发生遗传变异,但是这些遗传变异仅占遗传物质的一小部分,通常亲代和子代之…...

【汇编】“转移”综述、操作符offset、jmp指令
文章目录 前言一、转移综述1.1 :背景:1.2 转移指令1.3 转移指令的分类按转移行为根据指令对IP修改的范围不同 二、操作符offset2.1 offset操作符是干什么的?标号是什么? 2.2 nop是什么? 三、jmp指令3.1 jmp指令的功能3.2 jmp指令&…...

Java格式化类Format
文章目录 Format介绍Format方法- format(格式化)- parseObject(解析) 格式化分类日期时间格式化1. DateFormat常用方法getInstancegetDateInstancegetTimeInstancegetDateTimeInstance 方法入参styleLocale 2. SimpleDateFormat常…...

力扣每日一题-美化数组的最少删除数-2023.11.21
力扣每日一题:美化数组的最少删除数 开篇 今天的力扣每日一题居然写出来了,好开心,迫不及待地把题目分享出来,希望你也能把它狠狠拿下。 题目链接: 2216.美化数组的最少删除数 题目描述 代码思路 创建一个list集合来保存数组&a…...

【练习】检测U盘并自动复制内容到电脑的软件
软件作用: 有U盘插在电脑上后,程序会检测到U盘的路径。 自己可以提前设置一个保存复制文件的路径或者使用为默认保存的复制路径(默认为桌面,可自行修改)。 检测到U盘后程序就会把U盘的文件复制到电脑对应的…...

【计算机毕业设计】Springboot高校论文管理系统 -96280,免费送源码,【开题选题+程序定制+论文书写+答辩ppt书写-原创定制程序】
SpringBoot论文管理系统 摘 要 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,高校当然也不例外。论文管理系统是以实际运用为开发背景,运用软件工程原理和开发方…...

nginx 代理接口报404 问题排查
今天遇到一个nginx代理后端接口请求报404的问题,问题是这样的,后端由于服务器没有环境,但是需要和前端联调,于是采用cpolar内网穿透的方式,穿出来了。但是前端请求跨域,于是前端用nginx代理了一下后端接口&…...

JVM 调优指南
文章目录 为什么要学 JVM一、JVM 整体布局二、Class 文件规范三、类加载模块四、执行引擎五、GC 垃圾回收1 、JVM内存布局2 、 JVM 有哪些主要的垃圾回收器?3 、分代垃圾回收工作机制 六、对 JVM 进行调优的基础思路七、 GC 情况分析实例 JVM调优指南 -- 楼兰 JV…...

澳洲猫罐头如何?我亲自喂养过的优质猫罐头分享
猫罐头要符合三点:营养配方完整均衡、原料新鲜优质、生产工艺科学可靠。只有具备这些特点,才是品质上乘的猫罐头。 猫罐头的三个要素,一个都不能少。配方不均衡,营养就不足;原料不新鲜,生产出来的猫罐头就…...

CISP练习测试题
免责声明 文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为!利用本文章所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任,一旦造成后果请自行承担!!! 某公司准备在业务环境中部署一种新的计算机产品,下列哪一项…...

2023下半年软件设计师考试知识点大全思维导图
软件设计师考试知识点大全思维导图 2023年下半年第一次机考 复习资料 以上是我在学习过程中根据自己的知识结构的特点及刷到的考题 做的导图,有需要的可以留言发原版的 mmap格式文件 方便自己拓展. 软考资料 这是网上找的资料 汇总免费放在这里 吧
[C++ 从入门到精通] 12.重载运算符、赋值运算符重载、析构函数
📢博客主页:https://loewen.blog.csdn.net📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢本文由 丶布布原创,首发于 CSDN,转载注明出处🙉📢现…...

Android Binder 跨进程通信的优势是什么
Android Binder 跨进程通信的优势是什么 Android Binder 是 Android 系统中用于实现跨进程通信的底层机制,具有以下优势: 高效性:Android Binder 使用共享内存技术,在进程间传递数据时不需要进行数据拷贝,从而提高了传…...

HashMap的详细解读
HashMap是Java语言中的一个重要数据结构,它实现了Map接口,允许我们存储键值对,并且可以根据键直接访问对应的值。 特性 键值对存储:HashMap存储的是键值对数据,可以方便的通过键来获取值。无序:HashMap中…...

10个好用的Mac数据恢复软件推荐—恢复率高达99%
如果您正在寻找最好的 Mac 数据恢复软件来检索意外删除或丢失的文件,那么这里就是您的最佳选择。 我们理解,当您找不到 Mac 计算机或外部驱动器上保存的一些重要文件时,会感到多么沮丧和绝望。这些文件非常珍贵,无论出于何种原因…...

EtherCAT从站EEPROM分类附加信息详解:RXPDO(输入过程数据对象)
0 工具准备 1.EtherCAT从站EEPROM数据(本文使用DE3E-556步进电机驱动器)1 分类附加信息——RXPDO(输入过程数据对象) 1.1 分类附加信息规范 在EEPROM字64开始的区域存储的是分类附加信息,这里存储了包括设备信息、SM配置、FMMU配置在内的诸多信息。每个信息在一段连续的…...

释放锁流程源码剖析
1 释放锁流程概述 ReentrantLock的unlock()方法不区分公平锁还是非公平锁。 首先调用unlock()方法。 unlock()底层使用的是Sync.release(1)方法 public void unlock() {<!-- --> sync.release(1); } release(1)方法会调用tryRelease(1)去尝试解锁。 public fin…...

ComText让机器人有了情节记忆
为了让人类与机器人更好地交流,MIT 计算机科学与人工智能实验室的研究员开发了一个名为 ComText 的程序。这款程序给机器人增加了情节记忆,让它们能够接受更加复杂的命令。目前,他们已经在机器人 Baxter 上测试了程序。 机器人没有情景化的记…...

【Leetcode合集】13. 罗马数字转整数
13. 罗马数字转整数 13. 罗马数字转整数 代码仓库地址: https://github.com/slience-me/Leetcode 个人博客 :https://slienceme.xyz 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。 字符…...

centos oracle11g开启归档模式
要在 CentOS 上停止 Oracle 11g 数据库,你可以按照以下步骤操作: 1.登录到操作系统 首先,使用具有足够权限的用户登录到 CentOS 操作系统。通常情况下,你需要以具有 oracle 用户权限的用户登录。 使用 SYSDBA 权限连接到数据库…...

【数据结构初阶】双链表
双链表 1.双链表的实现1.1结口实现1.2申请结点1.3初始化双链表1.4打印双链表1.5尾插1.6尾删1.7头插1.8头删1.9计算大小1.10查找1.11pos位置插入1.12删除pos位置1.12删除双链表 全部码源 1.双链表的实现 1.1结口实现 #include<stdio.h> #include<stdlib.h> #inclu…...

Django实战:从零到一构建安全高效的Web应用
目录 一、概述 二、版本控制和部署 1、Git版本控制 2、Docker部署 三、数据库配置 1、配置数据库设置 2、创建数据库模型 四、URL路由和视图 1、定义URL路由 2、创建视图 五、模板渲染 1、创建模板 2、在视图中使用模板 总结 一、概述 Django是一个高级Python W…...

Docker build报错总结,版本过新大避雷!
1.速度太慢报错,需要换源; 在DOCKERFILE中添加镜像; RUN echo "deb http://mirror.sjtu.edu.cn/debian bookworm main non-free contrib" > /etc/apt/sources.list, 2.即使在Dockerfile中换源,但在bul…...

spider 网页爬虫中的 AWS 实例数据获取问题及解决方案
前言 AAWS实例数据对于自动化任务、监控、日志记录和资源管理非常重要。开发人员和运维人员可以通过AWS提供的API和控制台访问和管理这些数据,以便更好地管理和维护他们在AWS云上运行的实例。然而,在使用 spider 框架进行网页爬取时,我们常常…...

flink的window和windowAll的区别
背景 在flink的窗口函数运用中,window和windowAll方法总是会引起混淆,特别是结合上GlobalWindow的组合时,更是如此,本文就来梳理下他们的区别和常见用法 window和windowAll的区别 window是KeyStream数据流的方法,其…...

【机器学习】特征工程:特征选择、数据降维、PCA
各位同学好,今天我和大家分享一下python机器学习中的特征选择和数据降维。内容有: (1)过滤选择;(2)数据降维PCA;(3)sklearn实现 那我们开始吧。 一个数据集中…...