当前位置: 首页 > news >正文

多因素方差分析(Multi-way Analysis of Variance) R实现

1, data0507 flower 是某种植物在两个海拔和两个气温下的开花高度,采用合适 的统计方法,检验该种植物的开花高度在不同的海拔之间和不同的气温之间有无差异?如果有差异,具体如何差异的?(说明依据、结论等关键信息,包括计算过程中涉及的关键信息)

library(HH)  #HH包中的interaction2wt()可以同时展示主效应和交互效应

flower <- read.delim("D:/Datum/生物统计/data/data5/data0507 flower.txt")

flower

   Altitude Temperatyre Height
1         1           1  148.7
2         1           1  148.3
3         1           1  147.7
4         1           1  148.7
5         1           1  148.3
6         1           1  147.7
7         1           1  148.7
8         1           1  148.3
9         1           1  147.7
10        1           1  143.0
11        1           1  142.7
12        1           1  142.0
13        1           1  143.0
14        1           1  142.7
15        1           1  142.0
16        1           1  143.0
17        1           1  142.7
18        1           1  142.0
19        1           1  150.3
20        1           1  149.3
21        1           1  148.7
22        1           1  150.3
23        1           1  149.3
24        1           1  148.7
25        1           1  149.3
26        1           1  149.3
27        1           1  149.0
28        2           1  135.3
29        2           1  136.0
30        2           1  135.7
31        2           1  135.3
32        2           1  135.7
33        2           1  133.0
34        2           1  134.0
35        2           1  133.7
36        2           1  133.0
37        2           1  134.0
38        2           1  133.7
39        2           1  149.3
40        2           1  149.0
41        2           1  149.3
42        2           1  135.3
43        2           1  135.7
44        2           1  135.3
45        2           1  139.3
46        2           1  139.7
47        2           1  138.7
48        1           2  135.3
49        1           2  136.0
50        1           2  135.7
51        1           2  133.0
52        1           2  134.0
53        1           2  133.7
54        1           2  135.3
55        1           2  135.7
56        1           2  135.3
57        1           2  135.3
58        1           2  135.7
59        1           2  135.3
60        1           2  135.7
61        1           2  136.0
62        1           2  135.3
63        1           2  134.3
64        1           2  134.3
65        2           2  135.3
66        2           2  135.7
67        2           2  135.3
68        2           2  135.7
69        2           2  130.7
70        2           2  133.3
71        2           2  133.7
72        2           2  130.7
73        2           2  133.3
74        2           2  133.7
75        2           2  130.7
76        2           2  133.3
77        2           2  133.0
78        2           2  133.3
79        2           2  136.0
80        2           2  136.0
81        2           2  133.3
82        2           2  136.0
83        2           2  136.0
84        2           2  133.3
85        2           2  136.0
86        2           2  136.0
87        2           2  142.3

str(flower)  # 查看数据结构

summary(flower)  # 查看数据摘要统计量

plot(flower$Altitude, flower$Height)  # 绘制海拔与开花高度的散点图

plot(flower$Temperatyre, flower$Height)  # 绘制气温与开花高度的散点图

summary(aov(flower$Height~flower$Altitude*flower$Temperatyre))

#对于该植物的开花高度,海拔和气温之间有交互作用(F1,83=34.46,P<0.001)

#在控制了影响开花高度的海拔和气温的交互作用后,该种植物的开花高度在不同的海拔之间有极显著差异(F1,83=76.89,P<0.001)

#在控制了影响开花高度的海拔和气温的交互作用后,该种植物的开花高度在不同的气温之间有极显著差异(F1,83=100.52,小于0.001)

interaction2wt(flower$Height~flower$Altitude*flower$Temperatyre) #展示主效应和交互效应

#气温越高[从1到2],开花高度越低

#海拔越高[从1到2],开花高度越低

2, data0508 develop 是三种昆虫在七种条件下的生长期,采用合适的统计方法, 检验生长期在不同的物种之间和不同的条件之间有无差异?如果有差异,具体 如何差异的?(说明依据、结论等关键信息,包括计算过程中涉及的关键信息)

library(HH)  #HH包中的interaction2wt()可以同时展示主效应和交互效应

develop <- read.delim("D:/Datum/生物统计/data/data5/data0508 develop.txt")

develop

   Species Condition  Day
1        1         1  9.6
2        1         2 10.6
3        1         3  9.8
4        1         4 10.7
5        1         5 11.1
6        1         6 10.9
7        1         7 12.8
8        2         1  9.3
9        2         2  9.1
10       2         3  9.3
11       2         4  9.1
12       2         5 11.1
13       2         6 11.8
14       2         7 10.6
15       3         1  9.3
16       3         2  9.2
17       3         3  9.5
18       3         4 10.0
19       3         5 10.4
20       3         6 10.8
21       3         7 10.7

str(develop)  # 查看数据结构

summary(develop)  # 查看数据摘要统计量

plot(develop$Species, develop$Day)  # 绘制三种物种与昆虫生长期的散点图

plot(develop$Condition, develop$Day)  # 绘制七种条件与开花高度的散点图

# two fixed factors, full model

summary(aov(develop$Day~develop$Species*develop$Condition))

不存在交互作用

# two fixed factors, no interaction

summary(aov(develop$Day~develop$Species+develop$Condition))

#在控制了条件影响后,不同昆虫的生长期有显著差异(P=0.017,小于0.05)

#在控制了昆虫种类的影响后,处于不同条件下的昆虫测生长期有极显著差异(P=1.33e-05,小于0.001)

# two fixed factors, full model

summary.lm(aov(develop$Day~develop$Species+develop$Condition))

#对于物种影响(Species),物种 B,物种 C 具有较显著的负效应,即物种 B 物种 C 生长期较短,

#对于条件影响(Condition)ConditonC5, ConditonC6, ConditonC7 具有较显著的正效应,即 ConditonC5, ConditonC6, ConditonC7 生长期较长

interaction2wt(develop$Day~develop$Species+develop$Condition)  #查看主效应

#生长量:物种A>B>C(根据左下角图和summary.lm的结果)

#生长量:条件7>6>5>4>2>3>1(根据右上角图和summary.lm的结果)

相关文章:

多因素方差分析(Multi-way Analysis of Variance) R实现

1, data0507 flower 是某种植物在两个海拔和两个气温下的开花高度&#xff0c;采用合适 的统计方法&#xff0c;检验该种植物的开花高度在不同的海拔之间和不同的气温之间有无差异&#xff1f;如果有差异&#xff0c;具体如何差异的&#xff1f;&#xff08;说明依据、结论等关…...

git撤销某一次commit提交

一&#xff1a;撤销上一次commit提交&#xff0c;但不删除修改的代码 可以使用使用VSCode 二&#xff1a;使用 git reset --hard命令删除提交时&#xff0c;将会删除该提交及其之后的所有更改&#xff08;相当于你想要回滚到的提交的提交ID&#xff09; git reset --hard 版本…...

数据结构详细笔记——图

文章目录 图的定义图的存储邻接矩阵法邻接表法邻接矩阵法与邻接表法的区别 图的基本操作图的遍历广度优先遍历&#xff08;BFS&#xff09;深度优先遍历&#xff08;DFS&#xff09;图的遍历和图的连通性 图的定义 图G由顶点集V和边集E组成&#xff0c;记为G(V,E)&#xff0c;…...

黑马React18: 基础Part II

黑马React: 基础2 Date: November 16, 2023 Sum: 受控表单绑定、获取DOM、组件通信、useEffect、Hook、优化B站评论 受控表单绑定 受控表单绑定 概念&#xff1a;使用React组件的状态&#xff08;useState&#xff09;控制表单的状态 准备一个React状态值 const [value, se…...

Maven工程继承关系,多个模块要使用同一个框架,它们应该是同一个版本,项目中使用的框架版本需要统一管理。

1、父工程pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/PO…...

Selenium UI 自动化

一、Selenium 自动化 1、什么是Selenium&#xff1f; Selenium是web应用中基于UI的自动化测试框架。 2、Selenium的特点&#xff1f; 支持多平台、多浏览器、多语言。 3、自动化工作原理&#xff1f; 通过上图&#xff0c;我们可以注意到3个角色&#xff0c;下面具体讲解一…...

竞赛 题目:基于深度学习的图像风格迁移 - [ 卷积神经网络 机器视觉 ]

文章目录 0 简介1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 简介 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习卷积神经网络的花卉识别 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c…...

【unity3D-网格编程】01:Mesh基础属性以及用代码创建一个三角形

&#x1f497; 未来的游戏开发程序媛&#xff0c;现在的努力学习菜鸡 &#x1f4a6;本专栏是我关于游戏开发的网格编程方面学习笔记 &#x1f236;本篇是unity的网格编程系列01-mesh基础属性 网格编程系列01 mesh基础属性实践操作用代码初始化一个三角形在三角形的基础上改成正…...

Java贪吃蛇小游戏

Java贪吃蛇小游戏 import javax.swing.*; import java.awt.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyEvent; import java.awt.event.KeyListener; import java.util.LinkedList; import java.util.Random;publi…...

Linux:系统基本信息扫描(1)

#系统基本信息: uname -a #Linux发行版信息: lsb_release -a #内核与发行版信息: cat /proc/version #linux 用户 cat /etc/passwd #Linux 组查询 cat /etc/group #CPU详细信息:lscpu -a #获取CPU模式: cat /sys/devices/system/cpu/cpu0/cpufreq/scaling\_governor #per…...

VR全景打造亮眼吸睛创意内容:三维模型、实景建模

随着VR技术在不同行业之间应用落地&#xff0c;市场规模也在快速扩大&#xff0c;VR全景这种全新的视觉体验为我们生活中的许多方面都带来了无限的可能。更加完整的呈现出一个场景或是物体的所有细节&#xff0c;让浏览者感受到自己仿佛置身于现场一般&#xff1b;其次&#xf…...

ProTable高级表格获取表单数据

隐藏高级表格中的收起按钮 手动控制高级表格中的搜索按钮 获取高级表格中的表单数据 Forminstance 引入 然后在代码中定义 const refForm useRef(); 使用 refForm.current.getFileDsValue();...

力扣刷题第二十七天--二叉树

前言 题目大同小异&#xff0c;按要求来即可。 内容 一、二叉树的右视图 199.二叉树的右视图 给定一个二叉树的 根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 广度优先搜索 取每层最后一个…...

一个快递包裹的跨国之旅

事情要从今年三月份说起&#xff0c;一位爱尔兰的同事在6月份结婚&#xff0c;团队同事准备了中国风的丝绸画轴、领带、丝巾作为礼物。3月份开始邮寄&#xff0c;4月初爱尔兰方面收件&#xff0c;5月份因为文件不足、不完整、不正确等原因被取消进口&#xff0c;7月份退回到大连…...

qsort函数使用方法总结

目录 一、qsort函数原型 二、compar参数 三、各种类型的qsort排序 1. int 数组排序 2. 结构体排序 3. 字符串指针数组排序 4. 字符串二维数组排序 四、回调函数 1. 什么是回调函数 2. 为什么要用回调函数&#xff1f; 3. 怎么使用回调函数&#xff1f; 4.下面是…...

机器学习介绍与分类

随着科学技术的不断发展&#xff0c;机器学习作为人工智能领域的重要分支&#xff0c;正逐渐引起广泛的关注和应用。本文将介绍机器学习的基本概念、原理和分类方法&#xff0c;帮助读者更好地理解和应用机器学习技术。 一、机器学习的基本概念 机器学习是一种通过从数据中学…...

linux控制台命令

进入root sudo su root 浏览当前文件夹列表 ll ls 查看文件 vim test.txt :q 退出查看模式 上传 sudo rz rz 覆盖上传 rz -y 修改文件名&#xff1a; mv 旧文件名 新文件名 修改文件权限 sudo chmod ar xxx.txt sudo chmod 777 test.txt 7 4 2 1 读写运行权限…...

快时尚品牌Halara登上TikTok美国小店榜Top 5,运动健身风靡TikTok

TikTok Shop美国电商数据周榜&#xff08;11/06-12&#xff09;已出&#xff0c;具体信息如下&#xff1a; 上周总GMV达到5850万美元&#xff0c;日均出单840万美元&#xff1b;单日出单最高达2110万美元&#xff0c;是当前美国单日最高销售额&#xff1b; 截至11月12日&…...

Docker 安装 Oracle Database 23c

目录 访问 Oracle 官方网站 使用 Docker 运行 Oracle Database 23c 免费容器映像 创建并运行 Oracle Database 23c 容器 查看已下载的镜像 列出正在运行的容器 进入容器 sqlplus 命令 访问 Oracle 官方网站 Database Software Downloads | Oracle 中国 使用 Docker 运行…...

什么是美国服务器,有哪些优势,适用于什么场景?

​  在互联网发展的过程中&#xff0c;服务器扮演着至关重要的角色。而美国作为全球信息技术的中心&#xff0c;其服务器在全球范围内受到广泛关注。  美国服务器是指在美国本土机房搭建并运行的服务器。其拥有带宽大、优质硬件、售后运维好、位置优越、数据安全性高以及免备…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

Selenium 查找页面元素的方式

Selenium 查找页面元素的方式 Selenium 提供了多种方法来查找网页中的元素&#xff0c;以下是主要的定位方式&#xff1a; 基本定位方式 通过ID定位 driver.find_element(By.ID, "element_id")通过Name定位 driver.find_element(By.NAME, "element_name"…...

联邦学习带宽资源分配

带宽资源分配是指在网络中如何合理分配有限的带宽资源&#xff0c;以满足各个通信任务和用户的需求&#xff0c;尤其是在多用户共享带宽的情况下&#xff0c;如何确保各个设备或用户的通信需求得到高效且公平的满足。带宽是网络中的一个重要资源&#xff0c;通常指的是单位时间…...