用于神经网络的FLOP和Params计算工具
用于神经网络的FLOP和Params计算工具
1. FlopCountAnalysis
pip install fvcore
import torch
from torchvision.models import resnet152, resnet18
from fvcore.nn import FlopCountAnalysis, parameter_count_tablemodel = resnet152(num_classes=1000)tensor = (torch.rand(1, 3, 224, 224),)#分析FLOPs
flops = FlopCountAnalysis(model, tensor)
print("FLOPs: ", flops.total())def print_model_parm_nums(model):total = sum([param.nelement() for param in model.parameters()])print(' + Number of params: %.2fM' % (total / 1e6))print_model_parm_nums(model)
2. flopth
https://github.com/vra/flopth
pip install flopth
Running on models in torchvision.models
$ flopth -m alexnet
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===================+=============+=============+==========+==================+================================+==========+=================+=====================+
| features.0 | Conv2d | (3,224,224) | (64,55,55) | 23.296K | 0.0381271% | | 70.4704M | 9.84839% | #### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.1 | ReLU | (64,55,55) | (64,55,55) | 0.0 | 0.0% | | 193.6K | 0.027056% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.2 | MaxPool2d | (64,55,55) | (64,27,27) | 0.0 | 0.0% | | 193.6K | 0.027056% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.3 | Conv2d | (64,27,27) | (192,27,27) | 307.392K | 0.50309% | | 224.089M | 31.3169% | ############### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.4 | ReLU | (192,27,27) | (192,27,27) | 0.0 | 0.0% | | 139.968K | 0.0195608% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.5 | MaxPool2d | (192,27,27) | (192,13,13) | 0.0 | 0.0% | | 139.968K | 0.0195608% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.6 | Conv2d | (192,13,13) | (384,13,13) | 663.936K | 1.08662% | | 112.205M | 15.6809% | ####### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.7 | ReLU | (384,13,13) | (384,13,13) | 0.0 | 0.0% | | 64.896K | 0.00906935% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.8 | Conv2d | (384,13,13) | (256,13,13) | 884.992K | 1.44841% | | 149.564M | 20.9018% | ########## |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.9 | ReLU | (256,13,13) | (256,13,13) | 0.0 | 0.0% | | 43.264K | 0.00604624% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.10 | Conv2d | (256,13,13) | (256,13,13) | 590.08K | 0.965748% | | 99.7235M | 13.9366% | ###### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.11 | ReLU | (256,13,13) | (256,13,13) | 0.0 | 0.0% | | 43.264K | 0.00604624% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.12 | MaxPool2d | (256,13,13) | (256,6,6) | 0.0 | 0.0% | | 43.264K | 0.00604624% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| avgpool | AdaptiveAvgPool2d | (256,6,6) | (256,6,6) | 0.0 | 0.0% | | 9.216K | 0.00128796% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.0 | Dropout | (9216) | (9216) | 0.0 | 0.0% | | 0.0 | 0.0% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.1 | Linear | (9216) | (4096) | 37.7528M | 61.7877% | ############################## | 37.7487M | 5.27547% | ## |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.2 | ReLU | (4096) | (4096) | 0.0 | 0.0% | | 4.096K | 0.000572425% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.3 | Dropout | (4096) | (4096) | 0.0 | 0.0% | | 0.0 | 0.0% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.4 | Linear | (4096) | (4096) | 16.7813M | 27.4649% | ############# | 16.7772M | 2.34465% | # |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.5 | ReLU | (4096) | (4096) | 0.0 | 0.0% | | 4.096K | 0.000572425% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.6 | Linear | (4096) | (1000) | 4.097M | 6.70531% | ### | 4.096M | 0.572425% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+FLOPs: 715.553M
Params: 61.1008M
Running on custom models
# file path: /tmp/my_model.py
# model name: MyModel
import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)def forward(self, x1):x1 = self.conv1(x1)x1 = self.conv2(x1)x1 = self.conv3(x1)x1 = self.conv4(x1)return x1
$ flopth -m MyModel -p /tmp/my_model.py -i 3 224 224
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+FLOPs: 16.8591M
Params: 336.0
3. calflops
https://github.com/MrYxJ/calculate-flops.pytorch/tree/main
pip install calflops
from calflops import calculate_flops
from torchvision import modelsmodel = models.alexnet()
batch_size = 1
input_shape = (batch_size, 3, 224, 224)
flops, macs, params = calculate_flops(model=model, input_shape=input_shape,output_as_string=True,output_precision=4)
print("Alexnet FLOPs:%s MACs:%s Params:%s \n" %(flops, macs, params))
#Alexnet FLOPs:4.2892 GFLOPS MACs:2.1426 GMACs Params:61.1008 M
- from thop import profile
https://github.com/Lyken17/pytorch-OpCounter
pip install thop
from torchvision.models import resnet50
from thop import profile
model = resnet50()
input = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ))
class YourModule(nn.Module):# your definition
def count_your_model(model, x, y):# your rule hereinput = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ), custom_ops={YourModule: count_your_model})
相关文章:
用于神经网络的FLOP和Params计算工具
用于神经网络的FLOP和Params计算工具 1. FlopCountAnalysis pip install fvcoreimport torch from torchvision.models import resnet152, resnet18 from fvcore.nn import FlopCountAnalysis, parameter_count_tablemodel resnet152(num_classes1000)tensor (torch.rand(1…...
CUDA核函数,如何设置grid和block即不超过大小又能够遍历整个volume
此问题答案来自于openAI 1、Grid 大小: Grid 的大小由 dim3 grid 定义,其三个分量分别表示在 x、y、z 方向上的 Grid 数量。Grid 的大小不应该超过 GPU 的最大 Grid 大小。cudaDeviceGetAttribute获取限制。 int maxGridSizeX, maxGridSizeY, maxGridS…...
【Linux】软连接和硬链接:创建、管理和解除链接的操作
文章目录 1. 软链接和硬链接简介2. Linux软链接使用方法3. Linux硬链接使用方法4. 总结 1. 软链接和硬链接简介 什么是软链接 软链接(Symbolic Link),也称为符号链接,是包含了源文件位置信息的特殊文件。它的作用是间接指向一个文件或目录。如果软链接的源文件被删除或移动了,软…...
Matlab群体智能优化算法之海象优化算法(WO)
文章目录 一、灵感来源二、算法的初始化三、GTO的数学模型Phase1:危险信号和安全信号Phase2:迁移(探索)Phase3:繁殖(开发) 四、流程图五、伪代码六、算法复杂度七、WO搜索示意图八、实验分析和结…...
go语言学习-结构体
1、简介 Go语言中的结构体是一种自定义数据类型,可以将不同类型的数据字符组合在一起形成一个单独的实体。结构体可以用于存储和操作复杂的数据结构,以及创建自定义数据类型。通过自定义结构体创建的变量,可以存储不同类型的数据字段。在实际开发中,结构体的用途非常广泛,…...
Stable Diffusion进阶玩法说明
之前章节介绍了Stable Diffusion的入门,介绍了文生图的魅力,可以生成很多漂亮的照片,非常棒 传送门: Stable Diffusion新手村-我们一起完成AI绘画-CSDN博客 那我们今天就进一步讲讲这个Stable Diffusion还能做些什么, …...
PDF控件Spire.PDF for .NET【转换】演示:将PDF 转换为 HTML
由于各种原因,您可能想要将 PDF 转换为 HTML。例如,您需要在社交媒体上共享 PDF 文档或在网络上发布 PDF 内容。在本文中,您将了解如何使用Spire.PDF for .NET在 C# 和 VB.NET 中将 PDF 转换为 HTML。 Spire.Doc 是一款专门对 Word 文档进行…...
二分查找——34. 在排序数组中查找元素的第一个和最后一个位置
文章目录 1. 题目2. 算法原理2.1 暴力解法2.2 二分查找左端点查找右端点查找 3. 代码实现4. 二分模板 1. 题目 题目链接:34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode) 给你一个按照非递减顺序排列的整数数组 nums&#…...
MFC中的主窗口以及如何通过代码找到主窗口
MFC程序中的主窗口 在MFC程序中,可以设置主窗口,主窗口在应用程序类中设置,即设置应用程序类(通常以App结尾,通常包括InitInstance方法的类)的m_pMainWnd属性,将其设置为主窗口的指针。 一般在…...
Typora下载安装 (Mac和Windows)图文详解
目录 Windows版本 一、下载 二、安装 Mac版本 一、下载 二、安装...
32位单片机PY32F040,主频72M,外设丰富,支持断码LCD
PY32F040 系列微控制器采用高性能的 32 位 ARM Cortex-M0 内核,宽电压工作范围的 MCU。嵌入高达 128 Kbytes flash 和 16 Kbytes SRAM 存储器,最高工作频率 72 MHz。LQFP64封装两块出头就可以拿到,我们还有开发板和开发资料帮助客户更好的开发。 PY32F040 系列微控…...
Shell判断:模式匹配:case(二)
简单的JumpServer 1、需求:工作中,我们需要管理N多个服务器。那么访问服务器就是一件繁琐的事情。通过shell编程,编写跳板程序。当我们需要访问服务器时,看一眼服务器列表名,按一下数字,就登录成功了。 2、…...
从android.graphics.Path中取出Point点,Kotlin
从android.graphics.Path中取出Point点,Kotlin /*** 从一条Path中获取多少个Point点*/private fun getPoints(path: Path, pointCount: Int): Array<FloatPoint?> {val points arrayOfNulls<FloatPoint>(pointCount)val pm PathMeasure(path, false)…...
力扣C++学习笔记——C++ 给vector去重
要使用std::set对std::vector进行去重操作,您可以将向量中的元素插入到集合中,因为std::set会自动去除重复元素。然后,您可以将集合中的元素重新存回向量中。以下是一个示例代码,演示如何使用std::set对std::vector进行去重&#…...
Flutter笔记:使用相机
Flutter笔记 使用相机 作者:李俊才 (jcLee95):https://blog.csdn.net/qq_28550263 邮箱 :291148484163.com 本文地址:https://blog.csdn.net/qq_28550263/article/details/134493373 【简介】本文介绍在 Fl…...
包装类型的缓存机制
Java 基本数据类型的包装类型的大部分都用到了缓存机制来提升性能。 Byte,Short,Integer,Long 这 4 种包装类默认创建了数值 [-128,127] 的相应类型的缓存数据,Character 创建了数值在 [0,127] 范围的缓存数据,Boolean 直接返回 True or Fal…...
【BUG】第一次创建vue3+vite项目启动报错Error: Cannot find module ‘worker_threads‘
问题描述 第一次创建vue3vite项目启动报错如下: Error: Cannot find module worker_threadsat Function.Module._resolveFilename (internal/modules/cjs/loader.js:636:15)at Function.Module._load (internal/modules/cjs/loader.js:562:25)at Module.require (…...
多目标应用:基于非支配排序的鲸鱼优化算法NSWOA求解微电网多目标优化调度(MATLAB代码)
一、微网系统运行优化模型 微电网优化模型介绍: 微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客 二、基于非支配排序的鲸鱼优化算法NSWOA 基于非支配排序的鲸鱼优化算法NSWOA简介: 三、基于非支配排序的鲸鱼优化算法NSWOA求解微电网多目标优化…...
网络爬虫|Selenium——find_element_by_xpath()的几种方法
Xpath (XML Path Language),是W3C定义的用来在XML文档中选择节点的语言 一、从根目录/开始 有点像Linux的文件查看,/代表根目录,一级一级的查找,直接子节点,相当于css_selector中的>号 /html/body/div/p 二、根据…...
【Kingbase FlySync】命令模式:部署双轨并行,并实现切换同步
【Kingbase FlySync】命令模式:安装部署同步软件,实现Oracle到KES实现同步 双轨并行方案说明一.准备工作二.环境说明三.目标实操(1).准备安装环境Orcle服务器(Oracle40)1.上传所有工具包2.操作系统配置a.增加flysync 用户、设置密码b.配置环境变量c.调整limits.conf…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
