当前位置: 首页 > news >正文

用于神经网络的FLOP和Params计算工具

用于神经网络的FLOP和Params计算工具

1. FlopCountAnalysis

pip install fvcore
import torch
from torchvision.models import resnet152, resnet18
from fvcore.nn import FlopCountAnalysis, parameter_count_tablemodel = resnet152(num_classes=1000)tensor = (torch.rand(1, 3, 224, 224),)#分析FLOPs
flops = FlopCountAnalysis(model, tensor)
print("FLOPs: ", flops.total())def print_model_parm_nums(model):total = sum([param.nelement() for param in model.parameters()])print('  + Number of params: %.2fM' % (total / 1e6))print_model_parm_nums(model)

2. flopth

https://github.com/vra/flopth

pip install flopth 

Running on models in torchvision.models

$ flopth -m alexnet 
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| module_name   | module_type       | in_shape    | out_shape   | params   | params_percent   | params_percent_vis             | flops    | flops_percent   | flops_percent_vis   |
+===============+===================+=============+=============+==========+==================+================================+==========+=================+=====================+
| features.0    | Conv2d            | (3,224,224) | (64,55,55)  | 23.296K  | 0.0381271%       |                                | 70.4704M | 9.84839%        | ####                |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.1    | ReLU              | (64,55,55)  | (64,55,55)  | 0.0      | 0.0%             |                                | 193.6K   | 0.027056%       |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.2    | MaxPool2d         | (64,55,55)  | (64,27,27)  | 0.0      | 0.0%             |                                | 193.6K   | 0.027056%       |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.3    | Conv2d            | (64,27,27)  | (192,27,27) | 307.392K | 0.50309%         |                                | 224.089M | 31.3169%        | ###############     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.4    | ReLU              | (192,27,27) | (192,27,27) | 0.0      | 0.0%             |                                | 139.968K | 0.0195608%      |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.5    | MaxPool2d         | (192,27,27) | (192,13,13) | 0.0      | 0.0%             |                                | 139.968K | 0.0195608%      |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.6    | Conv2d            | (192,13,13) | (384,13,13) | 663.936K | 1.08662%         |                                | 112.205M | 15.6809%        | #######             |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.7    | ReLU              | (384,13,13) | (384,13,13) | 0.0      | 0.0%             |                                | 64.896K  | 0.00906935%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.8    | Conv2d            | (384,13,13) | (256,13,13) | 884.992K | 1.44841%         |                                | 149.564M | 20.9018%        | ##########          |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.9    | ReLU              | (256,13,13) | (256,13,13) | 0.0      | 0.0%             |                                | 43.264K  | 0.00604624%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.10   | Conv2d            | (256,13,13) | (256,13,13) | 590.08K  | 0.965748%        |                                | 99.7235M | 13.9366%        | ######              |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.11   | ReLU              | (256,13,13) | (256,13,13) | 0.0      | 0.0%             |                                | 43.264K  | 0.00604624%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.12   | MaxPool2d         | (256,13,13) | (256,6,6)   | 0.0      | 0.0%             |                                | 43.264K  | 0.00604624%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| avgpool       | AdaptiveAvgPool2d | (256,6,6)   | (256,6,6)   | 0.0      | 0.0%             |                                | 9.216K   | 0.00128796%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.0  | Dropout           | (9216)      | (9216)      | 0.0      | 0.0%             |                                | 0.0      | 0.0%            |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.1  | Linear            | (9216)      | (4096)      | 37.7528M | 61.7877%         | ############################## | 37.7487M | 5.27547%        | ##                  |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.2  | ReLU              | (4096)      | (4096)      | 0.0      | 0.0%             |                                | 4.096K   | 0.000572425%    |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.3  | Dropout           | (4096)      | (4096)      | 0.0      | 0.0%             |                                | 0.0      | 0.0%            |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.4  | Linear            | (4096)      | (4096)      | 16.7813M | 27.4649%         | #############                  | 16.7772M | 2.34465%        | #                   |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.5  | ReLU              | (4096)      | (4096)      | 0.0      | 0.0%             |                                | 4.096K   | 0.000572425%    |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.6  | Linear            | (4096)      | (1000)      | 4.097M   | 6.70531%         | ###                            | 4.096M   | 0.572425%       |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+FLOPs: 715.553M
Params: 61.1008M

Running on custom models

# file path: /tmp/my_model.py
# model name:  MyModel
import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)def forward(self, x1):x1 = self.conv1(x1)x1 = self.conv2(x1)x1 = self.conv3(x1)x1 = self.conv4(x1)return x1
$ flopth -m MyModel -p /tmp/my_model.py -i 3 224 224
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name   | module_type   | in_shape    | out_shape   |   params | params_percent   | params_percent_vis   | flops    | flops_percent   | flops_percent_vis   |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+FLOPs: 16.8591M
Params: 336.0

3. calflops

https://github.com/MrYxJ/calculate-flops.pytorch/tree/main

pip install calflops
from calflops import calculate_flops
from torchvision import modelsmodel = models.alexnet()
batch_size = 1
input_shape = (batch_size, 3, 224, 224)
flops, macs, params = calculate_flops(model=model, input_shape=input_shape,output_as_string=True,output_precision=4)
print("Alexnet FLOPs:%s   MACs:%s   Params:%s \n" %(flops, macs, params))
#Alexnet FLOPs:4.2892 GFLOPS   MACs:2.1426 GMACs   Params:61.1008 M 
  1. from thop import profile

https://github.com/Lyken17/pytorch-OpCounter

pip install thop
from torchvision.models import resnet50
from thop import profile
model = resnet50()
input = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ))
class YourModule(nn.Module):# your definition
def count_your_model(model, x, y):# your rule hereinput = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ), custom_ops={YourModule: count_your_model})

相关文章:

用于神经网络的FLOP和Params计算工具

用于神经网络的FLOP和Params计算工具 1. FlopCountAnalysis pip install fvcoreimport torch from torchvision.models import resnet152, resnet18 from fvcore.nn import FlopCountAnalysis, parameter_count_tablemodel resnet152(num_classes1000)tensor (torch.rand(1…...

CUDA核函数,如何设置grid和block即不超过大小又能够遍历整个volume

此问题答案来自于openAI 1、Grid 大小: Grid 的大小由 dim3 grid 定义,其三个分量分别表示在 x、y、z 方向上的 Grid 数量。Grid 的大小不应该超过 GPU 的最大 Grid 大小。cudaDeviceGetAttribute获取限制。 int maxGridSizeX, maxGridSizeY, maxGridS…...

【Linux】软连接和硬链接:创建、管理和解除链接的操作

文章目录 1. 软链接和硬链接简介2. Linux软链接使用方法3. Linux硬链接使用方法4. 总结 1. 软链接和硬链接简介 什么是软链接 软链接(Symbolic Link),也称为符号链接,是包含了源文件位置信息的特殊文件。它的作用是间接指向一个文件或目录。如果软链接的源文件被删除或移动了,软…...

Matlab群体智能优化算法之海象优化算法(WO)

文章目录 一、灵感来源二、算法的初始化三、GTO的数学模型Phase1:危险信号和安全信号Phase2:迁移(探索)Phase3:繁殖(开发) 四、流程图五、伪代码六、算法复杂度七、WO搜索示意图八、实验分析和结…...

go语言学习-结构体

1、简介 Go语言中的结构体是一种自定义数据类型,可以将不同类型的数据字符组合在一起形成一个单独的实体。结构体可以用于存储和操作复杂的数据结构,以及创建自定义数据类型。通过自定义结构体创建的变量,可以存储不同类型的数据字段。在实际开发中,结构体的用途非常广泛,…...

Stable Diffusion进阶玩法说明

之前章节介绍了Stable Diffusion的入门,介绍了文生图的魅力,可以生成很多漂亮的照片,非常棒 传送门: Stable Diffusion新手村-我们一起完成AI绘画-CSDN博客 那我们今天就进一步讲讲这个Stable Diffusion还能做些什么, …...

PDF控件Spire.PDF for .NET【转换】演示:将PDF 转换为 HTML

由于各种原因,您可能想要将 PDF 转换为 HTML。例如,您需要在社交媒体上共享 PDF 文档或在网络上发布 PDF 内容。在本文中,您将了解如何使用Spire.PDF for .NET在 C# 和 VB.NET 中将 PDF 转换为 HTML。 Spire.Doc 是一款专门对 Word 文档进行…...

二分查找——34. 在排序数组中查找元素的第一个和最后一个位置

文章目录 1. 题目2. 算法原理2.1 暴力解法2.2 二分查找左端点查找右端点查找 3. 代码实现4. 二分模板 1. 题目 题目链接:34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode) 给你一个按照非递减顺序排列的整数数组 nums&#…...

MFC中的主窗口以及如何通过代码找到主窗口

MFC程序中的主窗口 在MFC程序中,可以设置主窗口,主窗口在应用程序类中设置,即设置应用程序类(通常以App结尾,通常包括InitInstance方法的类)的m_pMainWnd属性,将其设置为主窗口的指针。 一般在…...

Typora下载安装 (Mac和Windows)图文详解

目录 Windows版本 一、下载 二、安装 Mac版本 一、下载 二、安装...

32位单片机PY32F040,主频72M,外设丰富,支持断码LCD

PY32F040 系列微控制器采用高性能的 32 位 ARM Cortex-M0 内核,宽电压工作范围的 MCU。嵌入高达 128 Kbytes flash 和 16 Kbytes SRAM 存储器,最高工作频率 72 MHz。LQFP64封装两块出头就可以拿到,我们还有开发板和开发资料帮助客户更好的开发。 PY32F040 系列微控…...

Shell判断:模式匹配:case(二)

简单的JumpServer 1、需求:工作中,我们需要管理N多个服务器。那么访问服务器就是一件繁琐的事情。通过shell编程,编写跳板程序。当我们需要访问服务器时,看一眼服务器列表名,按一下数字,就登录成功了。 2、…...

从android.graphics.Path中取出Point点,Kotlin

从android.graphics.Path中取出Point点&#xff0c;Kotlin /*** 从一条Path中获取多少个Point点*/private fun getPoints(path: Path, pointCount: Int): Array<FloatPoint?> {val points arrayOfNulls<FloatPoint>(pointCount)val pm PathMeasure(path, false)…...

力扣C++学习笔记——C++ 给vector去重

要使用std::set对std::vector进行去重操作&#xff0c;您可以将向量中的元素插入到集合中&#xff0c;因为std::set会自动去除重复元素。然后&#xff0c;您可以将集合中的元素重新存回向量中。以下是一个示例代码&#xff0c;演示如何使用std::set对std::vector进行去重&#…...

Flutter笔记:使用相机

Flutter笔记 使用相机 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/134493373 【简介】本文介绍在 Fl…...

包装类型的缓存机制

Java 基本数据类型的包装类型的大部分都用到了缓存机制来提升性能。 Byte,Short,Integer,Long 这 4 种包装类默认创建了数值 [-128&#xff0c;127] 的相应类型的缓存数据&#xff0c;Character 创建了数值在 [0,127] 范围的缓存数据&#xff0c;Boolean 直接返回 True or Fal…...

【BUG】第一次创建vue3+vite项目启动报错Error: Cannot find module ‘worker_threads‘

问题描述 第一次创建vue3vite项目启动报错如下&#xff1a; Error: Cannot find module worker_threadsat Function.Module._resolveFilename (internal/modules/cjs/loader.js:636:15)at Function.Module._load (internal/modules/cjs/loader.js:562:25)at Module.require (…...

多目标应用:基于非支配排序的鲸鱼优化算法NSWOA求解微电网多目标优化调度(MATLAB代码)

一、微网系统运行优化模型 微电网优化模型介绍&#xff1a; 微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客 二、基于非支配排序的鲸鱼优化算法NSWOA 基于非支配排序的鲸鱼优化算法NSWOA简介&#xff1a; 三、基于非支配排序的鲸鱼优化算法NSWOA求解微电网多目标优化…...

网络爬虫|Selenium——find_element_by_xpath()的几种方法

Xpath (XML Path Language)&#xff0c;是W3C定义的用来在XML文档中选择节点的语言 一、从根目录/开始 有点像Linux的文件查看&#xff0c;/代表根目录&#xff0c;一级一级的查找&#xff0c;直接子节点&#xff0c;相当于css_selector中的>号 /html/body/div/p 二、根据…...

【Kingbase FlySync】命令模式:部署双轨并行,并实现切换同步

【Kingbase FlySync】命令模式:安装部署同步软件&#xff0c;实现Oracle到KES实现同步 双轨并行方案说明一.准备工作二.环境说明三.目标实操(1).准备安装环境Orcle服务器(Oracle40)1.上传所有工具包2.操作系统配置a.增加flysync 用户、设置密码b.配置环境变量c.调整limits.conf…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...