当前位置: 首页 > news >正文

特征可视化技术t-SNE

特征可视化技术t-SNE

一、理论介绍

想要了解t-SNE的数学原理可以参考t-SNE完整笔记

关于t-SNE的使用过程中有以下几点需要注意:

  • t-SNE算法并不是每次都能产生相似结果。

  • t-SNE算法使得距离的概念适应于数据集中的区域密度变化。因此,它自然而然地扩大密集的集群,收缩稀疏的集群,使集群大小趋于平衡。

  • 还有一些可以阅读How to Use t-SNE Effectively

二、使用介绍

python sklearn就可以直接使用T-SNE,调用sklearn.mainfold.TSNE即可。

>>> import numpy as np
>>> from sklearn.manifold import TSNE
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
>>> X_embedded = TSNE(n_components=2, learning_rate='auto',
...                   init='random', perplexity=3).fit_transform(X)
>>> X_embedded.shape
(4, 2)

这里面TSNE自身参数网页中都有介绍。这里fit_trainsform(x)输入的x是numpy变量。pytroch中如果想要令特征可视化,需要转为numpy;此外,x的维度是二维的,第一个维度为例子数量,第二个维度为特征数量。比如上述代码中x就是4个例子,每个例子的特征维度为3。Pytroch中图像的特征往往大小是BXCXWXH的,可以flatten一下变成[B, CXWXH]。

参考文献

  1. 如何调参2:利用tSNE降维实现模型隐藏层的可视化
  2. How to Use t-SNE Effectively
  3. t-SNE完整笔记

相关文章:

特征可视化技术t-SNE

特征可视化技术t-SNE 一、理论介绍 想要了解t-SNE的数学原理可以参考t-SNE完整笔记 关于t-SNE的使用过程中有以下几点需要注意: t-SNE算法并不是每次都能产生相似结果。 t-SNE算法使得距离的概念适应于数据集中的区域密度变化。因此,它自然而然地扩大…...

.NET 导入导出Project(mpp)以及发布后遇到的Com组件问题

最近公司项目有一个对Project导入导出的操作,现在市面上能同时对Project进行导入导出的除了微软自带的Microsoft.Office.Interop.MSProject,还有就是Aspose.Tasks for .NET。但因为后者是收费软件且破解版的现阶段只到18.11,只支持.net Frame…...

centos 8安装配置 yum/dnf镜像源 以及 docker相关操作

Docker简介 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows操作系统的机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。 Docker组成部分: 镜…...

java基础之线程池

线程池1.线程池1.1 线程状态介绍1.2 线程池-基本原理1.3 线程池-Executors默认线程池1.4 线程池-Executors创建指定上限的线程池1.5 线程池-ThreadPoolExecutor1.6 线程池-参数详解1.7 线程池-非默认任务拒绝策略2. 原子性2.1 volatile-问题2.2 volatile解决2.3 synchronized解…...

Substrate 基础 -- 教程(Tutorials)

官网 github DOC 面向未来的区块链框架 Substrate 使开发人员能够快速、轻松地构建适合任何用例的未来 证明区块链(future proof blockchains)。 Substrate 文档包括区块链构建器(blockchain builders)和parachain 项目团队的概念、过程和参考信息。…...

一个线程两次调用start()方法会出现什么情况?

第17讲 | 一个线程两次调用start()方法会出现什么情况? 今天我们来深入聊聊线程,相信大家对于线程这个概念都不陌生,它是 Java 并发的基础元素,理解、操纵、诊断线程是 Java 工程师的必修课,但是你真的掌握线程了吗&am…...

看完再拿五分,软考高项时政提分必备

时事政治题作为软考信息系统项目管理师当中的必考题,每年都让不少考生头疼,主要吧,它一不在教材里,二考的又很随意,如果不是平时积累,专门注意去看,有时候很难答得对,弄得这几分就完…...

界面开发(1) --- PyQt5环境配置

PyQt5环境配置 第一步:首先安装社区版Pycharm 下载地址:https://www.jetbrains.com/pycharm/download/#sectionwindows 第二步:安装Anaconda3,配置虚拟环境 下载地址:https://www.anaconda.com/ 第三步&#xff1…...

shield分析

本文仅供学习交流,只提供关键思路不会给出完整代码,严禁用于非法用途,若有侵权请联系我删除!技术交流合作请私信! 熟练打开Fiddler设置好手机代理,摆弄半天一直抓不到包,应该是小红书监测到了F…...

Javaweb增删改查之【查】

Javaweb增删改查之【查】1.前端页面2.java链接数据库——集成mybatis2.1 建立层2.2 实体层entity2.3 mapper(dao层)2.4 mybatis配置文件2.5工具层util3.后台功能3.1servlet前几天跟着b站up主学javaweb登录,突然还是觉得这几年学了c是真的挺好…...

C++ STL:迭代器 Iterator

文章目录1、迭代器的类型2、traitsiterator_traitstype_traits泛化的指针,容器与算法的桥梁。提供一种方法,按照一定顺序访问一个聚合对象中各个元素,而又不暴露该对象的内部表示。既能对容器进行遍历,又可以对外隐藏容器的底层实…...

【C++】泛型编程——模板初阶

文章目录1. 泛型编程2. 函数模板2.1 函数模板的概念2.2 函数模板的使用2.3 函数模板的原理2.4 函数模板的实例化隐式实例化显式实例化2.5 模板参数的匹配原则3. 类模板1. 泛型编程 首先我们来思考一个问题:如何实现一个通用的交换函数呢? 即我们想交换两…...

数据结构入门--时间 空间复杂度

数据结构入门 时间 空间复杂度解析 目录 一. 算法效率 二. 时间复杂度 2.1 时间复杂度的概念 2.2 大O的渐进表示法 2.3 题目练习 题目一 题目二 题目三 题目四 题目五 题目六 题目七 三. 空间复杂度 3.1 题目练习 题目一 题目二 题目三 一. 算法效率 算法效率…...

计算机操作系统第一章

操作系统引论1.1操作系统的目标和作用定义:操作系统是控制管理计算机系统的硬软件,分配调度资源的系统软件。目标:方便性,有效性(提高系统资源的利用率、提高系统的吞吐量),可扩充性&#xff0c…...

ARM LDREX/STREX指令以及独占监控器详解

一、目的Linux驱动开发中有一个特别重要的知识点必须掌握,即并发、竞态以及同步。什么是并发?多个执行单元(进程、线程、中断)同时对一个共享资源的进行访问;此处的共享资源可以是外设、内存或者软件层面的全局变量静态…...

吉林大学 程序设计基础 2022级 实验复盘 2.23

本人能力有限,发出只为帮助有需要的人。 以下为实验课的复盘,内容会有大量失真,请多多包涵。 此次实验限时一个小时,时间很紧张,很多内容可能并不准确。 1.输出有规律的字母串 输入输出如下; 输入&…...

Linux系列 常用命令(目录和文件管理)vi和vim 编辑使用,(笔记)

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页​​​​​​ 目录 前言 一.常用命令(目录和文件管理) 1.查看文件内容 2.统计…...

OpenCV入门(一)Python环境的搭建

OpenCV入门(一)Python环境的搭建 因为有点Python基础,并且Python是比较好入门的编程语言,所以,机器视觉后面打算在Python这个平台下进行。 Windows平台OpenCV的Python开发环境搭建 1、Python 的下载与安装 Python是…...

3.查找算法:顺序查找和二分查找

查找查找,是指在一些数据元素中,通过一定的方法找出与给定关键字相同的数据元素的过程。列表查找(线性表查找):从列表中查找指定元素输入:列表,待查找元素输出:元素下标(…...

攻不下dfs不参加比赛(七)

标题 为什么练dfs题目总结重点为什么练dfs 相信学过数据结构的朋友都知道dfs(深度优先搜索)是里面相当重要的一种搜索算法,可能直接说大家感受不到有条件的大家可以去看看一些算法比赛。这些比赛中每一届或多或少都会牵扯到dfs,可能提到dfs大家都知道但是我们为了避免眼高手…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...