当前位置: 首页 > news >正文

架构探索之路-第一站-clickhouse | 京东云技术团队

一、前言

架构, 软件开发中最熟悉不过的名词, 遍布在我们的日常开发工作中, 大到项目整体, 小到功能组件, 想要实现高性能、高扩展、高可用的目标都需要优秀架构理念辅助. 所以本人尝试编写架构系列文章, 去剖析市面上那些经典优秀的开源项目, 学习优秀的架构理念来积累架构设计的经验与思考, 在后续日常工作中遇到相同问题时能有更深一层的认知.

本章以实时OALP引擎Clickhouse(简称ck)为例, 以其面向场景, 架构设计, 细节实现等方面来介绍, 深度了解其如何成为了OLAP引擎中的性能之王.

二、Clickhouse简介

Clickhouse是俄罗斯Yandex(俄罗斯网络用户最多的网站)于2016年开源的一个用于联机分析(OLAP)的列式数据库管理系统,采用C++语言编写, 主要用于在线分析处理查询, 通过SQL查询实时生成分析数据报告.

主要面向场景是快速支持任意指标、任意维度并且可以在大数据量级下实现秒级反馈的Ad-hoc查询(即席查询).

三、Clickhouse架构原理

clickhouse以其卓越的性能著称, 在相关性能对比报告中, ck在单表SQL查询的性能是presto的2.3倍、impala的3倍、greenplum的7倍、hive的48倍. 可以看出ck在单表查询是非常出色的, 那么ck究竟是如何实现高效查询的呢?

1. 引子

介绍ck查询原理之前先以最常见的mysql为例, 一条简单的查询语句是如何执行的, 然后再以ck架构师的角度去考虑ck应该如何优化. mysql查数据时会先从磁盘读出数据所在页(innodb存储单元) 到内存中, 然后再从内存中返回查询结果, 所以在我们的认知中sql查询(排除语法词法解析,优化等步骤)总结起来可以为以下两点:

  1. 磁盘读取数据到内存
  2. 内存中解析数据匹配结果返回

在现代计算机中, CPU参与运算的时间远小于磁盘IO的时间. 所以现代OLAP引擎大部分也选择通过降低磁盘IO的手段来提高查询性能, 举例如下:

降低磁盘IO原理举例列式
分布式并行读取数据,降低单节点读取数据量hive(texfile)数据倾斜,网络耗时,资源浪费
列式存储将每一列单独存储, 按需读取hbase适合列使用单一的业务

2. 架构

通过以上推导分析, 我们可以得出OLAP查询瓶颈在于磁盘IO, 那么ck的优化手段也是借鉴了以上措施, 采用了MPP架构(大规模并行处理)+列式存储, 拥有类似架构设计的其他数据库产品也有很多, 为什么ck性能如此出众? 接下来我们具体分析ck的核心特性, 进一步体会ck架构师的巧妙的架构理念.

2.1 列式存储

行式存储: 把同一行数据放到同一数据块中, 各个数据块之间连续存储.

列式存储: 把同一列数据放到同一数据块中, 不同列之间可以分开存储.

如同上述所讲, 分析类查询往往只需要一个表里很少的几个字段, Column-Store只需要读取用户查询的column, 而Row-Store读取每一条记录的时候会把所有column的数据读出来, 在IO上Column-Store比Row-Store效率高得多, 因此性能更好.

2.2 block

clickhouse能处理的最小单位是block, block是一群行的集合, 默认最大为8192行. 因为每一列单独存储, 因此每个数据文件相比于行式存储更有规律, 通过对block采用LZ4压缩算法, 整体压缩比大致可以8:1. 可以看出, clickhouse通过出色的压缩比与block结构实现了批处理功能, 对比海量数据存储下每次处理1行数据的情况, 大幅减少了IO次数, 从而达到了存储引擎上的优化.

2.3 LSM

LSM的思想: 对数据的修改增量保持在内存中,达到指定的限制后将这些修改操作批量写入到磁盘中,相比较于写入操作的高性能,读取需要合并内存中最近修改的操作和磁盘中历史的数据,即需要先看是否在内存中,若没有命中,还要访问磁盘文件

LSM的原理: 把一颗大树拆分成N棵小树,数据先写入内存中,随着小树越来越大,内存的小树会flush到磁盘中。磁盘中的树定期做合并操作,合并成一棵大树,以优化读性能。

Clickhouse通过LSM实现数据的预排序, 从而减少磁盘的读取量. 原理就是将乱序数据通过LSM在村中排序, 然后写入磁盘保存, 并定期合并有重合的磁盘文件. clickhouse的写入步骤可以总结为以下几点:

  1. 每一批次数据写入,先记录日志, 保证高可用机制
  2. 记录日志之后存入内存排序, 后将有序结果写入磁盘,记录合并次数Level=0
  3. 定期将磁盘上Level=0或1的文件合并,并标记删除. 后续物理删除
2.4 索引

clickhouse的采用一级索引(稀疏索引)+二级索引(跳数索引)来实现索引数据定位与查询. 一级索引记录每个block块的第一个, 每次基于索引字段查询只需要确定查询第几个block块即可, 避免一个查询遍历所有数据. 如上述介绍,一个block块为8192行,那么1亿条数据只需要1万行索引, 所以一级索引占用存储较小, 可常驻内存, 加速查询. 二级索引由数据的聚合信息构建而成,根据索引类型的不同,其聚合信息的内容也不同,跳数索引的目的与一级索引一样,也是帮助查询时减少数据扫描的范围, 原则都是“排除法”,即尽可能的排除那些一定不满足条件的索引粒度

另一方面可以发现, 因ck存储引擎按有序集合存储, 所以在索引结构上, 并不需要再利用B+树排序特性来定位. 所以在实际使用过程中, 也不需要满足最左原则匹配, 只要过滤条件中包含索引列即可.

2.5 向量化执行

向量化计算(vectorization),也叫vectorized operation,也叫array programming,说的是一个事情:将多次for循环计算变成一次计算。 为了实现向量化执行,需要利用CPU的SIMD指令。SIMD的全称是Single Instruction Multiple Data,即用单条指令操作多条数据。现代计算机系统概念中,它是通过数据并行以提高性能的一种实现方式 ( 其他的还有指令级并行和线程级并行 ),它的原理是在CPU寄存器层面实现数据的并行操作。

在计算机系统的体系结构中,存储系统是一种层次结构。典型服务器计算机的存储层次结构如图1所示。一个实用的经验告诉我们,存储媒介距离CPU越近,则访问数据的速度越快。

从左至右,距离CPU越远,则数据的访问速度越慢。从寄存器中访问数据的速度,是从内存访问数据速度的300倍,是从磁盘中访问数据速度的3000万倍。所以利用CPU向量化执行的特性,对于程序的性能提升意义非凡。 ClickHouse目前利用SSE4.2指令集实现向量化执行。

四、Clickhouse总结

1. clickhouse的舍与得

clickhouse在追求极致性能的路上, 采取了很多优秀的设计. 如上述讲的列存、批处理、预排序等等. 但是架构都有两面性, 从一另方面也带来了一些缺点

  • 高频次实时写入方面, 因ck会将批量数据直接落盘成小文件, 高频写入会造成大量小文件生成与合并, 影响查询性能. 所以ck官方也是建议大批低频的写入, 提高写入性能. 实际场景中建议在业务与数据库之间引入一层数据缓存层,来实现批量写入
  • 查询并发问题, clickhouse是采用并行处理机制, 即一个查询也会使用一半cpu去执行, 在安装时会自动识别cpu核数, 所以在发挥查询快的优势下, 也带来了并发能力的不足. 如果过多的查询数堆积达到max_concurrent_queries阈值, 则会报出too many simultaneous queries异常, 这也是ck的一种限流保护机制. 所以日常使用过程中注意慢sql的排查, 并发请求的控制是保证ck高可用的关键.

我们了解其原理之后, 能够对clickhouse有更深的认知, 也能够解释生产工作中曾经遇到的问题, 站在clickhouse架构师的角度去合理使用, 规避劣势, 发挥其特性.

2. clickhouse在实际生产中遇到的问题

2.1 zookeeper高负载影响

目前clickhouse开源版本ReplicatedMergeTree引擎强依赖zookeeper完成多副本选主, 数据同步, 故障恢复等功能, zookeeper在负载较高的情况下,性能表现不佳, 甚至会出现副本无法写入, 数据无法同步问题. 分析clickhouse对zookeeper相关的使用, 以副本复制流程为例, ck对zookeeper频繁的分发日志、数据交换是引起瓶颈原因之一.

解决通用方案:

京东零售: 自研基于Raft分布式共识算法的zookeeper替代方案.

2.2 资源管控问题

ClickHouse的资源管控能力不够完善,在 insert、select 并发高的场景下会导致执行失败,影响用户体验。这是因为社区版ClickHouse目前仅提供依据不同用户的最大内存控制,在超过阈值时会杀死执行的 query。

易观性能对比: https://zhuanlan.zhihu.com/p/54907288

官网性能对比: https://clickhouse.com/

作者:京东科技 李丹枫

来源:京东云开发者社区 转载请注明来源

相关文章:

架构探索之路-第一站-clickhouse | 京东云技术团队

一、前言 架构, 软件开发中最熟悉不过的名词, 遍布在我们的日常开发工作中, 大到项目整体, 小到功能组件, 想要实现高性能、高扩展、高可用的目标都需要优秀架构理念辅助. 所以本人尝试编写架构系列文章, 去剖析市面上那些经典优秀的开源项目, 学习优秀的架构理念来积累架构设…...

易航网址引导系统 v1.9 源码:去除弹窗功能的易航网址引导页管理系统

易航自主开发了一款极其优雅的易航网址引导页管理系统,后台采用全新的光年 v5 模板开发。该系统完全开源,摒弃了后门风险,可以管理无数个引导页主题。数据管理采用易航原创的JsonDb数据包,无需复杂的安装解压过程即可使用。目前系…...

创新无界:通义灵码在测试过程中展现的独特魅力

通义灵码基于通义大模型,提供代码智能生成、研发智能问答能力。本文就来介绍下通义灵码在测试过程中的应用。 操作手册: 通义灵码, 阿里云提供的一款基于通义大模型的智能编码辅助工具_云效-阿里云帮助中心 1. 什么是通义灵码 是阿里云出品的一款基于通…...

crmchat安装搭建教程文档 bug问题调试

一、安装PHP插件:fileinfo、redis、swoole4。 二、删除PHP对应版本中的 proc_open禁用函数。 一、设置网站运行目录public, 二、设置PHP版本选择纯静态。 三、可选项如有需求则开启SSL,配置SSL证书,开启强制https域名。 四、添加反向代理。 …...

Golang http 请求如何设置代理

ENV golang 1.17 使用代理 需要在创建 http client 的时候设置,使 http 库能够捕获环境变量 示例 func newClient(cert tls.Certificate) (*http.Client, error) {config : &tls.Config{Certificates: []tls.Certificate{cert},}config.BuildNameToCertific…...

电子眼与无人机在城市安防中的协同应用研究

随着城市化进程的快速推进,城市安全问题成为了人们关注的焦点。传统的安防手段已经无法满足现代城市复杂多变的安全需求。因此,结合电子眼与无人机技术,实现二者之间的协同应用,成为提升城市安防能力的重要途径。 一、电子眼与无人…...

LVS+keepalived——高可用集群

lvskeepalived:高可用集群 keepalived为lvs应运而生的高可用服务。lvs的调度器无法做高可用,于是keepalived这个软件。实现的是调度器的高可用。但是:keepalived不是专门为lvs集群服务的,也可以做其他代理服务器的高可用。 lvs的…...

使用 AWS boto3 库从 s3 桶中批量下载数据

文章目录 一、Boto3 快速安装二、账户配置三、代码示例3.1 下载单个文件3.2 下载文件夹内全部文件 官方文档 一、Boto3 快速安装 安装 Boto3 之前,先安装 Python 3.8 或更高版本;对 Python 3.6 及更早版本的支持已弃用。 通过 pip 安装最新的 Boto3 版…...

js ::after简单实战

::after的作用是在元素后面再加个XXX样式 工作中遇到了一个表格,鼠标指到单元格要有个整行编辑态的效果,下面写个简单的demo 有人可能会说了,直接修改某个单元格的hover样式不就行了嘛,问题是如果鼠标指到单元格和单元格直接的…...

数据结构与算法实验(黑龙江大学)

实验一 顺序存储的线性表(2 学时) 一、实验目的 1 、掌握线性表的逻辑结构特征。 2、熟练掌握线性表的顺序存储结构的描述方法。 3 、熟练掌握顺序表上各种基本操作的实现。 二、实验内容 1 、设线性表的数据元素都为整数,存放在顺序表…...

如何使用rclone将腾讯云COS桶中的数据同步到华为云OBS

在多云策略与数据迁移趋势下,企业往往需要将数据在不同云服务提供商之间进行迁移。本文介绍如何使用rclone工具同步腾讯云COS(Cloud Object Storage)桶中的数据到华为云OBS(Object Storage Service)。先决条件是您已经…...

gitlab

Gitlab 安装git yum安装 [rootgit ~]# yum -y install git编译安装 Git官网 #安装依赖关系 [rootgit ~]# yum install curl-devel expat-devel gettext-devel openssl-devel zlib-devel autoconf gcc perl-ExtUtils-MakeMaker # 编译安装 [rootgit ~]# tar -zxf git-2.0…...

3.计算机网络

1.重点概念 MSL(Maximum segment lifetime):TCP 报⽂最⼤⽣存时间。它是任何 TCP 报⽂在⽹络上存在的 最⻓时间,超过这个时间报⽂将被丢弃。实际应⽤中常⽤的设置是 30 秒,1 分钟和 2 分钟。 TTL(Time to …...

Doris表的动态分区

动态分区是在Doris 0.12版本中引入的新功能。旨在对表级别的分区实现生命周期管理(TTL),减少用户的使用负担。 目前实现了动态添加分区及动态删除分区的功能。动态分区只支持Range分区。 1 原理 在某些使用场景下,用户会将表按照天进行分区划分,每天定时执行例行任务,这时…...

docker小技能:部署mysql

文章目录 引言I Docker安装MySQL1.1 安装mysql1.2 配置容器自动重启参数1.3 查看版本II 配置MySQL2.1 设置为开机自启动2.2 执行MySQL安全性操作并设置密码2.3 配置文件2.4 创建数据库用户dmsTest,并授予远程连接权限。2.5 用户相关命令III 用户权限3.1 权限层级3.2 权限分类3.…...

“AI在未来”公益计划,亚马逊云科技将教育资源带到更多中西部学校

亚马逊云科技宣布携手中国光华科技基金会启动“AI在未来”公益计划2023至2024学年项目,预计本学年内在内蒙古、江西、湖南和广西四个省份开展该项目,并完成三年内为中西部地区一百所学校的一万名学生提供免费人工智能教育资源及实践机会的目标。 此外&am…...

MyBatis的xml实现

1.下载插件MyBatisX 2.添加依赖 <!--Mybatis 依赖包--><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.3.1</version></dependency><!--…...

dolphinscheduler任务莫名重跑

dolphinscheduler运行了一段时间&#xff0c;忽然发现一个流程下某个任务一直在自动重跑&#xff0c;把工作流删了&#xff0c;任务删了&#xff0c;下线等等&#xff0c;都不能阻止他重复的运行&#xff0c;每秒1次&#xff0c;真是见了鬼 1、把zookeeper停掉发现不再重跑了 …...

Modbus TCP/RTU协议转PROFINET协议网关

...

Caché for UNIX®, Linux及macOS的安装及配置

本文介绍在UNIX、Linux或macOS系统上安装Cach的操作步骤。本文假设用户已熟悉UNIX、Linux和macOS目录结构、实用程序和命令。 本文包含如下主要部分: 1)Cach安装。 2)无人值守的Cach安装。 3)安装后任务。...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

Vue 3 + WebSocket 实战:公司通知实时推送功能详解

&#x1f4e2; Vue 3 WebSocket 实战&#xff1a;公司通知实时推送功能详解 &#x1f4cc; 收藏 点赞 关注&#xff0c;项目中要用到推送功能时就不怕找不到了&#xff01; 实时通知是企业系统中常见的功能&#xff0c;比如&#xff1a;管理员发布通知后&#xff0c;所有用户…...