使用ExLlamaV2量化并运行EXL2模型
量化大型语言模型(llm)是减少这些模型大小和加快推理速度的最流行的方法。在这些技术中,GPTQ在gpu上提供了惊人的性能。与非量化模型相比,该方法使用的VRAM几乎减少了3倍,同时提供了相似的精度水平和更快的生成速度。
ExLlamaV2是一个旨在从GPTQ中挤出更多性能的库。由于新的内核,它还经过了优化,可以进行(非常)快速的推理。并且它还引入了一种新的量化格式EXL2,它为如何存储权重带来了很大的灵活性。

在本文中,我们将介绍如何量化EXL2格式的基本模型,以及如何运行它们。当然如果你喜欢使用现有的已经量化好的模型,TheBloke 仍然是第一选择。
量化EXL2模型
首先需要安装ExLlamaV2库:
pip install exllamav2#为了使用官方的一些脚本,我们还要把官方的代码clone到本地git clone https://github.com/turboderp/exllamav2
我们使用出色的zephyr-7B-beta,这是一种使用DPO进行微调的Mistral-7B模型。它声称在MT测试台上的表现优于Llama-2 70b的效果,这对于一个小十倍的模型来说是非常好的结果。
使用以下命令下载zephyr-7B-beta(这可能需要一段时间,因为模型大约是15gb):
git lfs installgit clone https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
GPTQ还需要一个校准数据集,该数据集用于通过比较基本模型及其量化版本的输出来衡量量化过程的影响。我们将使用wikitext数据集,直接下载测试文件如下:
wget https://huggingface.co/datasets/wikitext/resolve/9a9e482b5987f9d25b3a9b2883fc6cc9fd8071b3/wikitext-103-v1/wikitext-test.parquet
准备工作完成后,就可以利用ExLlamaV2库提供的convert.py脚本来进行量化了,主要的参数是:
-i:以HF格式(FP16)转换的基模型路径。
-o:存放临时文件和最终输出的工作目录路径。
-c:校准数据集的路径(Parquet格式)。
-b:目标平均加权位数(bpw)。例如,4.0 bpw将给出4位精度的存储权重。
让我们使用带有以下参数的convert.py脚本开始量化过程:
mkdir deephub-quantpython python exllamav2/convert.py \-i base_model \-o deephub-quant \-c wikitext-test.parquet \-b 5.0
这里就需要一个GPU来量化这个模型。根据官方文档指出,7B型号需要大约8 GB的VRAM, 70B型号需要大约24 GB的VRAM。zephyr-7b-beta在白嫖的谷歌Colab的T4 GPU,经过了2小时10分钟完成了量化。
ExLlamaV2利用GPTQ算法来降低权重的精度,同时最大限度地减少对输出的影响。GPTQ算法的更多详细信息可以参考我们以前的文章。
量化过程使用现有脚本非常的简单。那么还有最后一个问题,为什么要使用“EXL2”格式而不是常规的GPTQ格式呢?EXL2带来了哪些新功能?
它支持不同级别的量化:它不局限于4位精度,可以处理2、3、4、5、6和8位量化。
它可以在一个模型和每一层中混合不同的精度,以保留最重要的权重和具有更多bit的层。
ExLlamaV2在量化过程中使用了这种额外的灵活性。它会自动尝试不同的量化参数,并测量了它们引入的误差。除了尽量减少错误之外,ExLlamaV2还会将必须达到平均位数作为参数(这个我们在以前文章中也有介绍)。所以我们可以创建一个混合的量化模型,例如,每个权重的平均位数为3.5或4.5。
ExLlamaV2另外一个好处是它创建的不同参数的基准被保存在measurement.json文件中。我们可以直接看到具体的信息:
"key": "model.layers.0.self_attn.q_proj","numel": 16777216,"options": [{"desc": "0.05:3b/0.95:2b 32g s4","bpw": 2.1878662109375,"total_bits": 36706304.0,"err": 0.011161142960190773,"qparams": {"group_size": 32,"bits": [3,2],"bits_prop": [0.05,0.95],"scale_bits": 4}},
比如上面的内容,ExLlamaV2使用了5%的3位精度和95%的2位精度,平均值为2.188 bpw,组大小为32。这导致了一个明显的误差,所以在选择最佳参数时要考虑到这个误差,通过查看json文件的结果,我们可以判断出这次量化是否符合我们的要求,并且进行调整。
使用ExLlamaV2进行推理
模型已经量子化了,下面就是使用模型进行推理了。首先需要将基本配置文件从base_model目录复制到新的deephub-quant目录,代码如下:
!rm -rf deephub-quant/out_tensor!rsync -av --exclude='*.safetensors' --exclude='.*' ./base_model/ ./deephub-quant/
最直接的方法是使用ExLlamaV2 repo中的test_inference.py脚本(注意,我在这里没有使用聊天模板):
python exllamav2/test_inference.py -m quant/ -p "I have a dream"
与GGUF/llama.cpp或GPTQ等其他量化技术和工具相比,生成速度也非常快(在T4 GPU上每秒56.44个令牌)。
也可以使用chatcode.py脚本的聊天版本来获得更大的灵活性:
python exllamav2/examples/chatcode.py -m deephub-quant -mode llama
总结
ExLlamaV2已经被集成到几个常见的后端中,比如oobabooga的文本生成web UI。但是它需要FlashAttention 2和CUDA 12.1(这在windows中可能需要费一些时间)。
ExLlamaV2与GPTQ或llama.cpp等其他解决方案相比,可以自定义量化我们的模型。在量化之后,它每秒提供的令牌数量更多(更快)。这对于定制化的需求来说是非常有帮助的。
最后,本文代码:
https://avoid.overfit.cn/post/ce9c31f9650943bfa220f48f3ee2f430
作者:Maxime Labonne
相关文章:
使用ExLlamaV2量化并运行EXL2模型
量化大型语言模型(llm)是减少这些模型大小和加快推理速度的最流行的方法。在这些技术中,GPTQ在gpu上提供了惊人的性能。与非量化模型相比,该方法使用的VRAM几乎减少了3倍,同时提供了相似的精度水平和更快的生成速度。 ExLlamaV2是一个旨在从…...
【ARM AMBA AXI 入门 15 -- AXI-Lite 详细介绍】
请阅读【ARM AMBA AXI 总线 文章专栏导读】 文章目录 AXI LiteAXI-Full 介绍AXI Stream 介绍AXI Lite 介绍AXI Full 与 AIX Lite 差异总结AXI Lite AMBA AXI4 规范中包含三种不同的协议接口,分别是: AXI4-FullAXI4-LiteAXI4-Stream 上图中的 AXI FULL 和 AIX-Lite 我们都把…...
【开源】基于Vue.js的天然气工程业务管理系统的设计和实现
项目编号: S 021 ,文末获取源码。 \color{red}{项目编号:S021,文末获取源码。} 项目编号:S021,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、使用角色3.1 施工人员3.2 管理员 四…...
SpringBoot : ch04 整合数据源
前言 Spring Boot 是当今最流行的 Java 开发框架之一,它以简洁、高效的特点帮助开发者快速构建稳健的应用程序。在实际项目中,涉及到数据库操作的需求时,我们需要对数据源进行整合。本文将重点介绍如何在 Spring Boot 中整合数据源ÿ…...
Docker Swarm总结
目录 1、swarm 理论基础 1.1 简介 1.2 节点架构 1.3 服务架构 1.4 服务部署模式 2、swarm 集群搭建 2.1 需求 2.2 克隆主机 2.3 启动5个docker宿主机 2.4 查看 swarm 激活状态 2.5 关闭防火墙 2.6 swarm 初始化 2.7 添加 worker 节点 2.8 添加 manager 节点 3…...
特殊token的特殊用途
特殊token的特殊用途 特殊voc设计传统的特殊token 用途特殊用途例子特殊voc设计 普通token1 。。。。普通token1000,特殊token1,,,,,特殊token100 ,特殊指示token1,,,特殊指示token100 传统的特殊token 用途 在您提供的示例中,有1000个普通 token(从普通 token …...
苹果Siri怎么打开?教你两招轻松唤醒!
苹果Siri助手是苹果公司开发的智能语音助手。作为智能语音助手,Siri可以理解用户的指令,并给出相应的回答或执行相应的操作,帮助大家完成各种任务,比如发送短信、查询天气、播放音乐、设置提醒等等。 然而,还有一些小…...
分类问题的评价指标
一、logistic regression logistic regression也叫做对数几率回归。虽然名字是回归,但是不同于linear regression,logistic regression是一种分类学习方法。 同时在深度神经网络中,有一种线性层的输出也叫做logistic,他是被输入…...
Hive 定义变量 变量赋值 引用变量
Hive 定义变量 变量赋值 引用变量 变量 hive 中变量和属性命名空间 命名空间权限描述hivevar读写用户自定义变量hiveconf读写hive相关配置属性system读写java定义额配置属性env只读shell环境定义的环境变量 语法 Java对这个除env命名空间内容具有可读可写权利; …...
51单片机LED灯渐明渐暗实验
51单片机LED灯渐明渐暗实验 1.概述 这篇文章介绍使用单片机控制两个LED彩灯亮度渐明渐暗效果,详细介绍了操作步骤以及完整的程序代码,动手就能制作的小实验。 2.操作步骤 2.1.硬件搭建 1.硬件准备 名称型号数量单片机STC12C2052AD1LED彩灯无2晶振1…...
美团面试:微服务如何拆分?原则是什么?
尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中,最近有小伙伴拿到了一线互联网企业如美团、字节、如阿里、滴滴、极兔、有赞、希音、百度、网易的面试资格,遇到很多很重要的面试题: 微服务如何拆分? 微服务拆分的规范和原则…...
easyExcel注解详情
前言11个注解字段注解 类注解基础综合示例补充颜色总结 11个注解 ExcelProperty ColumnWith 列宽 ContentFontStyle 文本字体样式 ContentLoopMerge 文本合并 ContentRowHeight 文本行高度 ContentStyle 文本样式 HeadFontStyle 标题字体样式 HeadRowHeight 标题高度 HeadStyle…...
S7-1200PLC 作为MODBUSTCP服务器通信(多客户端访问)
S7-1200PLC作为MODBUSTCP服务器端通信编程应用,详细内容请查看下面文章链接: ModbusTcp通信(S7-1200PLC作为服务器端)-CSDN博客文章浏览阅读239次。S7-200Smart plc作为ModbusTcp服务器端的通信S7-200SMART PLC ModbusTCP通信(ModbusTcp服务器)_s7-200 modbustcp-CSDN博客文…...
泰勒多项式
泰勒展开 f ( x ) P n ( x ) R n ( x ) f(x)P_n(x)R_n(x) f(x)Pn(x)Rn(x) P n ( x ) ∑ 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k P_n(x)\sum_0^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k Pn(x)∑0nk!f(k)(x0)(x−x0)k R n ( x ) f ( n 1 ) ( ξ x 0 ) ( n 1 ) !…...
【Hello Go】Go语言文本文件处理
文本文件处理 字符串处理字符串操作ContainsJoinindexrepeatReplaceSplitTrimFields 字符串转换AppendFormatParse 正则表达式Json处理编码Json通过结构体生产Json通过map生产json 解码Json解析到结构体解析到interface 文件操作相关api介绍建立和打开文件关闭文件写文件读文件…...
ppt录屏制作微课,轻松打造精品课程
微课作为一种新型的教学方式逐渐受到广大师生的欢迎。微课具有方便快捷、内容丰富、互动性强等特点,可以有效地帮助教师传达知识,提高学生的学习效果。其中,ppt录屏制作微课就是一种常见的方式。本文将介绍ppt录屏的使用方法,帮助…...
php伪随机数
利用工具 php_mt_seed <?php // php 7.2function white_list() {return mt_rand();}echo white_list(), "\n";echo white_list(), "\n";echo white_list(), "\n"; 输入命令: ./php_mt_seed 1035656029 <?phpmt_srand(181095…...
为什么录屏没声音?实用技巧大放送!
录屏已成为我们在数字时代记录和分享内容的重要方式之一。但有时,您可能会遇到录制视频却没有声音的问题。这个问题可能出现在不同的录屏软件中,导致许多人感到疑惑。在本文中,我们将探讨为什么录屏没声音,并提供两种解决方案&…...
分布式系统的认证授权
一.分布式系统的认证授权大致架构 以云音乐系统为例: 注:一般情况下,我们会把认证的部分的接口提取为一个单独的认证服务模块中。 二.单点登录(Single Sign On) 单点登录,Single Sign On,简称…...
TVS瞬态抑制二极管的工作原理和特点?|深圳比创达电子EMC
TVS二极管一般是用来防止端口瞬间的电压冲击造成后级电路的损坏。防止端口瞬间的电压冲击造成后级电路的损坏。有单向与双向之分,单向TVS一般应用于直流供电电路,双向TVS应用于交流供电电路。 TVS产品的额定瞬态功率应大于电路中可能出现的最大瞬态浪涌…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...
RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上
一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema,不需要复杂的查询,只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 :在几秒钟…...
ABAP设计模式之---“Tell, Don’t Ask原则”
“Tell, Don’t Ask”是一种重要的面向对象编程设计原则,它强调的是对象之间如何有效地交流和协作。 1. 什么是 Tell, Don’t Ask 原则? 这个原则的核心思想是: “告诉一个对象该做什么,而不是询问一个对象的状态再对它作出决策。…...
