全志R128芯片RTOS调试指南
RTOS 调试指南
此文档介绍 FreeRTOS 系统方案支持的常用软件调试方法,帮助相关开发人员快速高效地进行软件调试,提高解决软件问题的效率。
栈回溯
栈回溯是指获取程序的调用链信息,通过栈回溯信息,能帮助开发者快速理清程序执行流程,提高分析问题的效率。
用途
- 获取程序调用关系,理清程序执行流程。
- 在系统触发异常时,快速分析异常所在位置及其调用链。
- 在分析某任务卡死原因时,可以通过对该任务进行栈回溯,快速分析卡死点。
- 分析某些资源如 sem、mutex 的获取、释放信息。
配置
Kernel Options ‑‑‑>Backtrace Select (debug backtrace by machine code) ‑‑‑>(X) debug backtrace by machine code // 通过解析机器码方式进行回溯( ) debug backtrace by frame pointer // 通过解析frame pointer方式进行回溯( ) no backtrace // 关闭栈回溯
接口介绍
int backtrace(char *taskname, void *output[], int size, int offset, print_function print_func);
参数:
- taskname : 任务名字;可为NULL,表示回溯当前任务
- output : 栈回溯结果保存数组,可以为NULL
- size : output数组大小,可为0
- offset : 栈回溯保存结果的偏移,可为0
- print_func : 打印函数,可用printf
返回值:
- level : 回溯层次
终端命令
在设备端的终端界面上支持使用 backtrace 命令对指定的任务进行回溯。
作用:查看指定任务堆栈回溯信息
用法:backtrace [taskname]
回溯信息解析
- 在 PC 端开发环境中,在 FreeRTOS SDK 根目录下,执行 source envsetup.sh
- 在 PC 端开发环境中,在 FreeRTOS SDK 的 lichee/rtos 目录下创建 backtrace.txt 文件,然后将回溯信息从终端中拷贝出来,并保存到 backtrace.txt 文件中。
- 在 PC 端开发环境中,执行 callstack backtrace.txt 命令,会获取以下回溯信息。
mhd_start_scan at /xxx/mhd_apps_scan.c:334 #mhd_start_scan表示函数名,/xxx/mhd_apps_scan.c表示函数所在的文件路径,334表示函数调用处的行号。mhd_softap_start at /xxx/mhd_apps_softap.c:263
wifi_recv_cb at /xxx/mhd_api_test.c:624
mhd_get_host_sleep at /xxx/mhd_apps_wifi.c:81
bswap_16 at /xxx/aw‑alsa‑lib/bswap.h:39
(inlined by) convert_from_s16 at ??:?
linear_init at /xxx/pcm_rate_linear.c:378
resampler_basic_interpolate_single at /xxx/resample_speexdsp.c:395
__fill_vb2_buffer at /xxx/videobuf2‑v4l2.c:392
cci_read at /xxx/cci_helper.c:728
ecdsa_signature_to_asn1 at /xxx/ecdsa.c:294
cmd_wifi_fwlog at /xxx/mhd_api_test.c:449
# 函数调用顺序为从下到上,即cmd_wifi_fwlog ‑> ecdsa_signature_to_asn1 ‑> cci_read ... ‑> mhd_start_scan
注意事项
请确保执行解析命令时所指定的 rt_system.elf 为系统固件所对应的 rt_system.elf 文件,否则解析后的栈回溯信息无法确保正确。
addr2line 分析
发生异常时,如果栈回溯失败,可以通过 addr2line 工具,对打印出来的栈上数据进行分析,从而确定栈回溯信息。需要注意的是,使用该方法调试的开发人员,需要提前了解一些 ARM 体系架构和入栈出栈等相关知识。
用途
在栈回溯失败时,使用 addr2line 从栈上数据中分析栈回溯信息。
用法
发生异常时当前栈内容打印如下:
dump stack memory:
0x40940f18: 0x40639028 0x4099ba68 0x00000000 0x00000000
0x40940f28: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f38: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f48: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f58: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f68: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f78: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f88: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f98: 0x00000000 0x404f3680 0x00000001 0x4099ba68
0x40940fa8: 0x4099ba68 0x00000001 0x4099b628 0x00000542
0x40940fb8: 0x4099bb68 0x40141388 0x4099ba68 0x404f3680
0x40940fc8: 0x4099a628 0x4099ba68 0x4099bb6a 0x40142214
0x40940fd8: 0x40141e2c 0x00000000 0x40141e2c 0xdeadbeef
0x40940fe8: 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef
0x40940ff8: 0xdeadbeef 0x400d88b4 0x00000000 0x0001b63d
对所有的内存数据使用下列命令进行分析。
$(SDK_ROOT)/lichee/rtos/tools/gcc‑arm‑melis‑eabi‑8‑2019‑q3‑update/bin/arm‑melis‑eabi‑addr2line ‑a address ‑e rt_system.elf ‑f# SDK_ROOT 表示SDK根目录
# ‑f:显示函数名
# ‑a:address为打印出来的地址
# ‑e:程序文件
分析
对于无法解析的内存数据予以丢弃后,可得到以下有效的分析信息。
0x40141388
msh_exec
/xxx/finsh_cli/msh.c:4150x40142214
finsh_thread_entry
/xxx/finsh_cli/shell_entry.c:746
# 函数调用关系 finsh_thread_entry ‑> msh_exec
内存泄露分析
FreeRTOS 系统提供轻量级的内存泄露分析功能,启动内存泄露分析后,每当申请内存时,将该内存块挂入链表中,释放时将其从链表中摘除。最终还存在于链表之中的,便是可疑的内存泄露点。
用途
可用于分析、定位 FreeRTOS 系统的内存泄露问题。
配置
System components ‑‑‑>aw components ‑‑‑>Memleak Components Support ‑‑‑>[*] Tina RTOS Memleak #使能内存泄露分析工具(16) Tina RTOS Memleak Backtrace Level @ 内存泄露分析栈回溯层数
终端命令
memleak
作用:内存泄露分析
用法:memleak 1 使能内存泄露分析,记录所有内存块申请信息memleak 0 关闭内存泄露分析,删除所有内存块的申请信息memleak 1 thread_name1 thread_name2 使能内存泄露分析,记录指定任务的内存块申请信息memleak show 不关闭内存泄露分析,打印出所有内存块申请信息
memallocate
作用:查看指定任务的内存泄露分析信息
用法:memallocate thread_name
内存泄露 log 分析
关闭内存泄露检测时,会打印可疑的内存泄露点及其回溯信息,开发者可根据回溯信息,参考栈回溯章节进行分析。
001: ptr = 0x404c7800, size = 0x00000400.backtrace : 0x401da778backtrace : 0x4013cd78backtrace : 0x4013b190backtrace : 0x401b7c44backtrace : 0x401e1854# ptr : 存留在链表中的内存块地址
# size : 存留在链表中的内存块大小
# backtrace : 申请该内存块时的栈回溯信息
内存重复释放检查
FreeRTOS 系统提供轻量级的内存重复释放分析功能,在内存堆管理器初始化完成之后,使能内存重复释放检测功能,每当申请内存时,将该内存块挂入链表中,释放时将其从链表中摘除。如果释放一个不存在于该链表中的内存块时,说明之前已经释放过该块内存,则本次释放即为内存重复释放。
用途
分析是否存在内存重复释放,以及找到第 2 次释放同一个内存块的调用链信息
配置
System components ‑‑‑>aw components ‑‑‑>Memleak Components Support ‑‑‑>[*] Tina RTOS Memleak #使能内存泄露分析工具[*] Tina RTOS Double Free Check #使能内存重复释放检查
内存重复释放 log 分析
double free checked!!!
backtrace : 0x401da778
backtrace : 0x4013cd78
backtrace : 0x4013b190
backtrace : 0x401b7c44
backtrace : 0x401e1854
出现 double free checked!!! 即表示存在内存重复释放现象,打印出来的栈回溯信息是第二次释放该内存块时的调用链信息。
系统崩溃异常分析
系统崩溃异常主要是指 CPU 因非法地址访问、指令译码错误等原因,进入了异常模式,表现形式为系统打印异常栈信息和寄存器信息。
Arm M33 Star CPU 软件异常分析
M33 CPU 异常类型
M33 是采用 ARMv8m 指令集架构的处理器,其软件异常处理类型符合 ARMv8m 软件异常类型。其异常类型如下:
- Bus Fault。触发该异常的原因有:取指失败(prefetch abort)、数据读/写失败(data abort)。BFSR 寄存器会保存产生 bus fault 的原因。
- MemManage Fault。触发该异常的原因有:访问 MPU 设置区域覆盖范围之外的地址、往只读region 写数据、用户级下访问了只允许在特权级下访问的地址、在不可执行的存储器区域试图取指。MFSR 寄存器保存产生该异常的原因,MMSR 寄存器保存了导致异常的地址。
- User Fault。触发该异常的原因有:执行了未定义的指令、尝试进入 ARM 状态、使用 LDRM/STRM 多重加载/存储指令时,地址没有对齐、除数为零、任何未对齐的访问。UFSR 寄存器保存了产生该异常的原因。其中需要注意一点,device memory 在任何情况下都不允许非对齐访问。
- Hard Fault。触发该异常的原因有:Bus fault、MemManage Fault 以及用法 fault 上访的结果、在异常处理中读取异常向量表时产生的总线 fault 也按硬 fault 处理。HFSR 寄存器保存了产生该异常的原因。
M33 CPU 软件异常分析方法
- 确认异常类型。
- 栈回溯分析。栈回溯是指在系统崩溃之后,会打印发生异常时的栈回溯信息,供开发者进行分析,可参考栈回溯章节进行分析
崩溃 log 分析
# appos pstack:0x8146480 msp:0x81fffd0 psp:0x81464a0
# appos pstack 表示异常发生后经 CPU 硬件入栈后 SP 寄存器的值,也表明了异常发生时正在使用哪个栈
# msp 表示异常发生后 msp 寄存器的值
# psp 表示异常发生后 psp 寄存器的值,异常发生时 SP = psp/msp ‑ 0x40 (64个字节用来保存异常后的寄存器现场)
# msplim/psplim : 异常现场的 msplim 和 psplim 寄存器的值
# usage fault happen : 表示此时触发 usage(user) fault
# cause:undefine instruction 表示是触发了 user fault 中的非法指令异常
# CPU registers: 表示异常现场通用寄存器的值
# backtrace information : 表示异常现场的栈回溯信息
# 剩下信息表示对应地址的值exception:6 happen!!
appos pstack:0x8146480 msp:0x81fffd0 psp:0x81464a0
msplim:0x0 psplim:0x8142550
usage fault happen, UFSR:0x1, cause:undefine instruction
CPU registers:
R00:[081464A0]: 0x00000001
R01:[081464A4]: 0x083adf48
R02:[081464A8]: 0x00000001
R03:[081464AC]: 0x080cf115
R04:[08146480]: 0x083adec0
R05:[08146484]: 0x083ae000
R06:[08146488]: 0x0811b574
R07:[0814648C]: 0x00000000
R08:[08146490]: 0x08080808
R09:[08146494]: 0x09090909
R10:[08146498]: 0x10101010
R11:[0814649C]: 0x11111111
R12:[081464B0]: 0x00000000
R13(SP):[081464C0]: 0x081464c0
R14(LR):[081464B4]: 0x080c8d95
R15(PC):[081464B8]: 0x080cf114
xPSR:[081464BC]: 0x61000000
SHCSR:0x00070008 step:0
‑‑‑‑backtrace information‑‑‑‑
backtrace : 0X080CF115
backtrace fail!
backtrace : 0X080C8D92
backtrace : 0X080C6C66
backtrace : 0X080C7CE0
backtrace : 0X080DAD25
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
stack info:
[081464C0]: 0x003adec0 0x0844ae00 0x08130eb0 0x080c6c69
[081464D0]: 0x0813e470 0x080d8bcf 0x10000000 0x00000000
[081464E0]: 0x00000000 0x00000006 0x0813e220 0x0813e470
[081464F0]: 0x05050505 0x0813e140 0x05050505 0x0813e180
[08146500]: 0x07070707 0x08080808 0x09090909 0x10101010
[08146510]: 0x11111111 0x080c7ce3 0x080c6afb 0x08130eb0
[08146520]: 0x10101010 0x11111111 0x0813e180 0x01010101
.......
[LR]:0x80c8d95
[080C8B90]: 0xf73bbaa5 0xf73bbaa1 0xf73bba9d 0xe92dba99
[080C8BA0]: 0x28024ff0 0x4605b085 0xdc06468a 0x30e0f64a
[080C8BB0]: 0x000ff6c0 0xf837f008 0x2810e008 0xf64add0c
.......
RISC‑V CPU 软件异常分析

在 RISCV 架构中,该类问题的分析方法如下:
- 确认异常类型。
- 栈回溯分析。栈回溯是指在系统崩溃之后,会打印发生异常时的栈回溯信息,供开发者进行分析,可参考栈回溯章节进行分析
- 查看 sepc 寄存器。当系统发生异常时,会将异常指令的地址保存到 sepc 寄存器中。如果 sepc明显是一个非法的指令地址,可查看 ra 寄存器来确定异常地址
- 反编译查看异常指令,确定异常的直接原因并进行分析。常用反编译方法 riscv64‑unknown‑elf‑objdump ‑d xxx.elf。xxx.elf 需要根据 sepc 寄存器的值,确认其所属模块,然后选定对应的elf 文件。
部分采用 RISC‑V 指令集的芯片不一定会运行 S 模式,只会运行 M 模式,所以此处所指的 sepc 和 mepc 可根据实际情况进行替换,其他 RISC‑V 寄存器同理
# EXC_STORE_PAGE_FAULT: 回写数据访问页面异常,可参考[RISCV异常分析]来分析
# gprs : 通用寄存器的值
# sepc : 异常发生时pc寄存器的值
# sstatus : 异常发生时sstaus寄存器的值
# sscratch : 异常发生时sscratch寄存器的值
# backtrace : 异常发生时栈回溯信息
# dump stack memory : 异常发生时栈的数据内容
# dump sepc memory : 异常发生时sepc地址指向的数据内容=====================================================================================================
EXC_BREAKPOINT
=====================================================================================================
gprs:
x0:0x0000000000000000 ra:0x0000000008252828 sp:0x000000000844aef0 gp:0x00000000083695b0
tp:0x0000000000000000 t0:0x0000000000000009 t1:0x0000000000000002 t2:0x0000000000000000
s0:0x000000000844af00 s1:0x0000000000000000 a0:0x0000000000000001 a1:0x000000000844af00
a2:0x0000000000000000 a3:0x0000000000000000 a4:0x0000000000000000 a5:0x0000000008252162
a6:0x0000000000000000 a7:0x0000000000000008 s2:0x0000000000000001 s3:0x000000000844b180
s5:0x0000000000000800 s5:0x0000000008329c88 s6:0x00000000082fca88 s7:0xa5a5a5a5a5a5a5a5
s8:0xa5a5a5a5a5a5a5a5 s9:0xa5a5a5a5a5a5a5a5 s10:0xa5a5a5a5a5a5a5a5 s11:0xa5a5a5a5a5a5a5a5
t3:0x0000000000000022 t4:0x000000000844af08 t5:0x000000000000003b t6:0x0000000000000020
other:
mepc :0x0000000008252162
mcause :0x0000000000000003
mtval :0x0000000000000000
mstatus :0x0000000a00003980
mscratch:0x0000000000000000
‑‑‑‑‑‑‑backtrace‑‑‑‑‑‑‑‑‑‑‑
backtrace : 0X08252162
backtrace : invalid lr(0000000000000000)
backtrace : 0X08252826
backtrace : 0X08251D52
backtrace : 0X082520B4
backtrace : 0X082F6694
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
==> Round [1] <==
Total Heap Size : 4587992 Bytes ( 4480 KB)
Free : 3893696 Bytes ( 3802 KB)
Min Free : 3851104 Bytes ( 3760 KB)
dump_memory:stack
0x000000000844AE70: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AE80: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AE90: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AEA0: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AEB0: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AEC0: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AED0: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AEE0: 0x00000800 0x00000000 0x0825281c 0x00000000
0x000000000844AEF0: 0x00000000 0x00000001 0x0844b005 0x00000000
0x000000000844AF00: 0x0844b000 0x00000000 0x00000000 0x00000000
.......
dump_memory:mepc
0x00000000082520E6: 0xbfb90084 0xfe07871b 0x0ff77713 0x05e00693
0x00000000082520F6: 0xf4e6e8e3 0x0ff00713 0xf4e404e3 0x0084d78b
0x0000000008252106: 0x74132405 0xbf2d0ff4 0xf4067179 0xe42af022
.......
dump_memory:x1
0x0000000008252818: 0xe61ff0ef 0x691cc519 0x85a2c789 0x9782854a
0x0000000008252828: 0x30834485 0x34032281 0x85262201 0x21013903
0x0000000008252838: 0x21813483 0x23010113 0x71198082 0xeccef4a6
0x0000000008252848: 0x0010c497 0x45448493 0x0010c997 0x44898993
0x0000000008252858: 0xf0caf8a2 0x0009a403 0x0004a903 0xe0dae8d2
0x0000000008252868: 0xf862fc5e 0xf06af466 0xe4d6fc86 0x8b2aec6e
0x0000000008252878: 0xe4028bae 0x0014d797 0x4607a223 0x000d8c17
0x0000000008252888: 0x124c0c13 0x06800a13 0x03a00c93 0x03f00d13
.......
dump_memory:x3
0x00000000083695A0: 0x082c9752 0x00000000 0x00000000 0x00000000
0x00000000083695B0: 0x00000000 0x00000000 0x08348148 0x00000000
0x00000000083695C0: 0x00000000 0x00000000 0x082c8b80 0x00000000
0x00000000083695D0: 0x082cab12 0x00000000 0x00000000 0x00000000
0x00000000083695E0: 0x08349070 0x00000000 0x00000000 0x00000000
0x00000000083695F0: 0x082d19ce 0x00000000 0x082d174c 0x00000000
0x0000000008369600: 0x00000000 0x00000000 0x0834caa8 0x00000000
0x0000000008369610: 0x00000000 0x00000000 0x00000000 0x00000000
.......
断点调试
断点调试是指利用 CPU 的硬件断点或者软件断点来进行调试,通过对指定的地址设置断点,当程序执行到该地址时,触发软件取指异常,再根据异常信息进行分析。通过使用该方法,可以迅速判断程序是否执行到指定的地址。目前该功能仅在使用 M33 Star CPU 的芯片上支持。
用途
可用于分析软件执行流程,以及快速分析函数调用参数、返回值等。
配置
System components ‑‑‑>aw components ‑‑‑>Watchpoint Components Support ‑‑‑>[*] Tina RTOS Watchpoint # 使用断点与观察点
终端命令
作用 : 设置程序断点,当前仅使用硬件断点
用法 : breakpoint [set | remove] addrset : 设置断点remove : 取消断点addr : 在该地址设置断点
接口介绍
设置断点
int gdb_set_hw_break(unsigned long addr);
参数
- addr : 待设置断点的地址
返回值
- 0 : 设置断点成功
- ‑1 : 设置断点失败
移除断点
int gdb_remove_hw_break(unsigned long addr);
参数
- addr : 待移除断点的地址
返回值
- 0 : 移除断点成功
- -1 : 移除断点失败
断点异常分析
断点异常分析,可参考系统崩溃异常分析章节进行分析。
观察点调试
观察点调试是指利用 CPU 的硬件观察点来进行调试,通过对指定的地址设置指定属性的观察点,当 CPU 对该地址进行指定属性的操作时,会触发数据访问异常,然后再根据异常信息进行分析。通过使用该方法,可以迅速判断某块内存是否被修改、读取或者访问。目前该功能仅在使用 M33 Star CPU 的芯片上支持。
观察点属性表
| 属性 | 作用 |
|---|---|
| write | 监视写操作 |
| read | 监视读操作 |
| access | 监视访问操作,包括读和写 |
用途
可用于分析某块内存处是否被篡改等问题。
配置
System components ‑‑‑>aw components ‑‑‑>Watchpoint Components Support ‑‑‑>[*] Tina RTOS Watchpoint # 使用断点与观察点
终端命令
作用 : 设置硬件观察点,当前仅使用硬件断点
用法 : watchpoint [write | read | access | remove] addrwrite : 监视写操作read : 监视读操作access : 监视访问操作remove : 取消观察点addr : 在该地址设置/取消观察点
接口介绍
设置观察点
int gdb_set_hw_watch(unsigned long addr, enum gdb_bptype type);
参数
-
addr : 待设置断点的地址
-
type : 观察点类型
返回值
-
0 : 设置观察点成功
-
‑1 : 设置观察点失败
移除观察点
int gdb_remove_hw_watch(unsigned long addr);
参数
- addr : 待移除观察点的地址
返回值
-
0 : 移除观察点成功
-
‑1 : 移除观察点失败
观察点异常分析
观察点异常分析,可参考系统崩溃异常分析章节进行分析。
相关文章:
全志R128芯片RTOS调试指南
RTOS 调试指南 此文档介绍 FreeRTOS 系统方案支持的常用软件调试方法,帮助相关开发人员快速高效地进行软件调试,提高解决软件问题的效率。 栈回溯 栈回溯是指获取程序的调用链信息,通过栈回溯信息,能帮助开发者快速理清程序执行…...
超级实用的程序员接单平台,看完少走几年弯路,强推第一个!
“前途光明我看不见,道路曲折我走不完。” 兜兜转转,心心念念,念念不忘,必有回响。终于找到了… 网络上好多人都在推荐程序员线上接单,有人说赚得盆满钵满,有的人被坑得破口大骂,还有的人甚至还…...
前端字符串方法汇总
1、length属性 const sss lengthconsole.log(字符串长度是, sss.length) 2、chartAt() charAt()和charCodeAt()方法都可以通过索引来获取指定位置的值: charAt() 方法获取到的是指定位置的字符;charCodeAt()方法获取的是指定位置字符的Unicode值。 …...
12 分布式锁加入看门狗
1、看门狗的流程图 2、看门狗的代码实现 /****类说明:Redis的key-value结构*/ public class LockItem {private final String key;private final String value;public LockItem(String key, String value) {this.key key;this.value value;}public String getKey…...
怎么判断list是否为null
List<Entity> baseMess new ArrayList<>(); baseMess motiveService.getBaseMessage(machine.get(i),preDate,nowDate); System.out.println("获取Size"baseMess.size()); baseMess.removeIf(Objects::isNull); System.out.println("获取Size"…...
11.数据公式中使用2个 $$ a =b $$,是什么意思?
在 LaTeX 中,双美元符号 $$ 用于进入和退出独立的数学模式,也就是数学公式模式。在 $$ 中的文本将被视为数学公式,并以数学排版的方式显示。 具体地说,$$ 的使用是为了在文档中创建居中显示的独立数学公式。这意味着公式将单独占…...
设计模式-14-迭代器模式
经典的设计模式有23种,但是常用的设计模式一般情况下不会到一半,我们就针对一些常用的设计模式进行一些详细的讲解和分析,方便大家更加容易理解和使用设计模式。 1-原理和实现 迭代器模式(Iterator Design Pattern)&a…...
防雷接地+防雷工程施工综合方案
一、地凯科技防雷工程接地概述 防雷接地工程是指在建筑物或其他设施上安装防雷装置,以防止雷电对人员、设备和建筑物造成危害的工程。防雷装置主要包括避雷针(网)、引下线、接地体(网)等部分,其中接地体&a…...
排序算法--选择排序
实现逻辑 ① 第一轮从下标为 1 到下标为 n-1 的元素中选取最小值,若小于第一个数,则交换 ② 第二轮从下标为 2 到下标为 n-1 的元素中选取最小值,若小于第二个数,则交换 ③ 依次类推下去…… void print_array(int a[], int n){f…...
【Web】Ctfshow SSRF刷题记录1
核心代码解读 <?php $url$_POST[url]; $chcurl_init($url); curl_setopt($ch, CURLOPT_HEADER, 0); curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1); $resultcurl_exec($ch); curl_close($ch); ?> curl_init():初始curl会话 curl_setopt():会…...
【算法挨揍日记】day30——300. 最长递增子序列、376. 摆动序列
300. 最长递增子序列 300. 最长递增子序列 题目解析: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如&#…...
ROS2对比ROS1的一些变化与优势(全新安装ROS2以及编译错误处理)《1》
1、概述 我们在前面介绍的ROS,都是ROS1的版本,近期对机器狗进行学习的时候,发现版本是ROS2了,也发现平时习惯的一些命令都有了变化,改变还是挺大的,不过熟悉之后还是很习惯ROS2的写法。 ROS2不是在ROS1的基…...
基于单片机PM2.5监测系统仿真设计
**单片机设计介绍, 基于单片机PM2.5监测系统仿真设计 文章目录 一 概要简介设计目标系统组成工作流程仿真设计结论 二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 # 基于单片机PM2.5监测系统仿真设计介绍 简介 PM2.5(可吸…...
CRM系统中的联系人是什么?如何进行联系人管理?
上手CRM系统前掌握专业术语是必要的功课,在第一次使用CRM系统时小编和大家一样,分不清楚线索、联系人、客户、商机之间的关系,今天我们就来着重分享一下CRM中联系人是什么?如何进行联系人管理? CRM系统联系人是指能够…...
uniapp:如何实现点击图片可以全屏展示预览
这个需要使用uniapp中的api:uni.previewImage,使用方法如下 1、html <template><view><image src"图片路径" click"preview"></image></view> </template> 2、JavaScript <script> e…...
python运行hhsearch二进制命令的包装器类
hhsearch 是 HMM-HMM(Hidden Markov Model to Hidden Markov Model)比对方法的一部分,属于 HMMER 软件套件。它用于进行蛋白质序列的高效比对,特别适用于检测远缘同源性。 以下是 hhsearch 的一些主要特点和用途: HMM…...
Java 网络编程、e-mail、多线程编程
一、Java 网络编程: 网络编程时指编写运行在多个设备的程序,这些设备通过网络连接起来。 Java.net包中的J2SE的API包含有类和接口,提供低层次的通信细节。 java.net 包中提供了两种常见的网络协议的支持: TCP:TCP&…...
为虚幻引擎开发者准备的Unity指南
目录 1.前言2.编辑器2.1 Scene 视图(视口)2.2 Game 视图 (Play in Editor)2.3.Hierarchy 窗口 (World Outliner)2.4 Project 窗口(Content Browser)2.5 Inspector (Details)2.6 Console(消息视图/输出日志)2.7 Modes 面板在哪里&a…...
Vue 2使用element ui 表格不显示
直接修改package.json文件 把这两个依赖修改成对应的 删除node_modules 重新安装依赖 重启...
C++学习 --文件
文件操作步骤: 1, 包含头文件#include<fstream> 2, 创建流对象:ofstream ofs 3, 打开文件:ofs.open("文件路径", 打开方式) 4, 写数据:ofs <<…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
