深入浅出PaddlePaddle函数——paddle.Tensor
分类目录:《深入浅出PaddlePaddle函数》总目录
Tensor是Paddle中最为基础的数据结构,有几种创建Tensor的不同方式:
- 用预先存在的数据创建1个
Tensor,请参考paddle.to_tensor - 创建一个指定
shape的Tensor,请参考paddle.ones、paddle.zeros、paddle.full等 - 创建一个与其他
Tensor具有相同shape与dtype的Tensor,请参考paddle.ones_like、paddle.zeros_like、paddle.full_like
属性
clear_grad:将当前Tensor的梯度设为0,仅适用于具有梯度的Tensor,通常我们将其用于参数,因为其他临时Tensor没有梯度。
import paddle
input = paddle.uniform([10, 2])
linear = paddle.nn.Linear(2, 3)
out = linear(input)
out.backward()
print("Before clear_grad, linear.weight.grad: {}".format(linear.weight.grad))
linear.weight.clear_grad()
print("After clear_grad, linear.weight.grad: {}".format(linear.weight.grad))
clear_gradient:与clear_grad功能相同dtype:查看一个Tensor的数据类型,支持:bool、float16、float32、float64、uint8、int8、int16、int32、int64类型
import paddle
x = paddle.to_tensor([1.0, 2.0, 3.0])
print("tensor's type is: {}".format(x.dtype))
grad:查看一个Tensor的梯度,数据类型为numpy.ndarray
import paddle
x = paddle.to_tensor([1.0, 2.0, 3.0], stop_gradient=False)
y = paddle.to_tensor([4.0, 5.0, 6.0], stop_gradient=False)
z = x * y
z.backward()
print("tensor's grad is: {}".format(x.grad))
is_leaf:判断Tensor是否为叶子Tensor。对于stop_gradient为True的Tensor,它将是叶子Tensor。对于stop_gradient为False的Tensor, 如果它是由用户创建的,它也会是叶子Tensor。
import paddle
x = paddle.to_tensor(1.)
print(x.is_leaf) # True
x = paddle.to_tensor(1., stop_gradient=True)
y = x + 1
print(x.is_leaf) # True
print(y.is_leaf) # True
x = paddle.to_tensor(1., stop_gradient=False)
y = x + 1
print(x.is_leaf) # True
print(y.is_leaf) # False
item(*args):将Tensor中特定位置的元素转化为Python标量,如果未指定位置,则该Tensor必须为单元素Tensor。
import paddle
x = paddle.to_tensor(1)
print(x.item()) #1
print(type(x.item())) #<class 'int'>
x = paddle.to_tensor(1.0)
print(x.item()) #1.0
print(type(x.item())) #<class 'float'>
x = paddle.to_tensor(True)
print(x.item()) #True
print(type(x.item())) #<class 'bool'>
x = paddle.to_tensor(1+1j)
print(x.item()) #(1+1j)
print(type(x.item())) #<class 'complex'>
x = paddle.to_tensor([[1.1, 2.2, 3.3]])
print(x.item(2)) #3.3
print(x.item(0, 2)) #3.3
name:查看一个Tensor的name,Tensor的name是其唯一标识符,为python的字符串类型。
import paddle
print("Tensor name: ", paddle.to_tensor(1).name) # Tensor name: generated_tensor_0
ndim:查看一个Tensor的维度,也称作rank。
import paddle
print("Tensor's number of dimensition: ", paddle.to_tensor([[1, 2], [3, 4]]).ndim) # Tensor's number of dimensition: 2
persistable:查看一个Tensor的persistable属性,该属性为True时表示持久性变量,持久性变量在每次迭代之后都不会删除。模型参数、学习率等Tensor,都是持久性变量。
import paddle
print("Whether Tensor is persistable: ", paddle.to_tensor(1).persistable) # Whether Tensor is persistable: false
place:查看一个Tensor的设备位置,Tensor可能的设备位置有三种:CPU/GPU/固定内存,其中固定内存也称为不可分页内存或锁页内存, 其与GPU之间具有更高的读写效率,并且支持异步传输,这对网络整体性能会有进一步提升,但其缺点是分配空间过多时可能会降低主机系统的性能, 因为其减少了用于存储虚拟内存数据的可分页内存。
import paddle
cpu_tensor = paddle.to_tensor(1, place=paddle.CPUPlace())
print(cpu_tensor.place)
shape:查看一个Tensor的shape,shape是Tensor的一个重要的概念,其描述了Tensor在每个维度上的元素数量。
import paddle
print("Tensor's shape: ", paddle.to_tensor([[1, 2], [3, 4]]).shape) # Tensor's shape: [2, 2]
stop_gradient:查看一个Tensor是否计算并传播梯度,如果stop_gradient为True,则该Tensor不会计算梯度,并会阻绝Autograd的梯度传播。 反之,则会计算梯度并传播梯度。用户自行创建的的Tensor,默认是True,模型参数的stop_gradient都为False。
import paddle
print("Tensor's stop_gradient: ", paddle.to_tensor([[1, 2], [3, 4]]).stop_gradient) # Tensor's stop_gradient: True
相关文章:
深入浅出PaddlePaddle函数——paddle.Tensor
分类目录:《深入浅出PaddlePaddle函数》总目录 Tensor是Paddle中最为基础的数据结构,有几种创建Tensor的不同方式: 用预先存在的数据创建1个Tensor,请参考paddle.to_tensor创建一个指定shape的Tensor,请参考paddle.on…...
docker删除已停止的容器
一、docker删除已停止的容器 1、根据容器的状态,删除Exited状态的容器 先停止容器、再删除镜像中的容器、最后删除none的镜像。执行命令如下: docker stop $(docker ps -a | grep "Exited" | awk {print $1 }) #停止容器 docker rm $(docke…...
JS#1 引入方式和基础语法
JavaScript(JS)是一门跨平台, 面向对象的脚本语言, 来控制网页行为的, 它能够是网页可交互一. 引入方式内部脚本与外部脚本内部脚本: 将JS代码定义在HTML页面中外部脚本: 将JS代码定义在外部JS文件中, 然后引入到HTML页面中注意: 在HTML中,JS代码必须位于<script></sc…...
面了一个测试工程师,明显感觉他背了很多面试题...
最近有朋友去字节面试,面试前后进行了20天左右,包含4轮电话面试、1轮笔试、1轮主管视频面试、1轮hr视频面试。 据他所说,80%的人都会栽在第一轮面试,要不是他面试前做足准备,估计都坚持不完后面几轮面试。 其实&…...
C#生成缩略图
using System;using System.Collections.Generic;using System.Drawing;using System.Drawing.Drawing2D;using System.Drawing.Imaging;using System.Text;namespace learun.util{public enum ThumbnailMode{/// <summary>/// 指定宽度,高度按照比例缩放/// …...
算法 # SimHash 算法:文本相似度、文本去重、海量文本快速查询
SimHash SimHash 是 Google 发明的海量网页去重的高效算法,将原始的文本映射为 64 位的二进制串,然后通过比较二进制的差异进而表示原始文本内容的差异。 传统的 Hash 算法只负责将原始内容尽量均匀随机地映射为一个 hash 值,原理上相当于伪随机数产生算法。SimHash 本身属…...
Java程序设计-JSP程序设计-SSM校园二手交易系统
摘 要 网络的广泛应用给生活带来了十分的便利。所以把二手物品交易管理与现在网络相结合,利用java技术建设二手物品交易系统,实现二手物品交易的信息化。则对于进一步提高二手物品交易管理发展,丰富二手物品交易管理经验能起到不少的促进作用…...
springBoot 消息转换器和自定义消息转换器
public interface HttpMessageConverter<T> {/*** 能否以指定的类读取*/boolean canRead(Class<?> clazz, Nullable MediaType mediaType);/*** 能否以指定的类写*/boolean canWrite(Class<?> clazz, Nullable MediaType mediaType);/*** 返回支持是消息转…...
机器学习笔记之流形模型——标准流模型基本介绍
机器学习笔记之流形模型——标准流模型基本介绍引言回顾:隐变量模型的缺陷标准流(Normalizing Flow\text{Normalizing Flow}Normalizing Flow)思想分布变换的推导过程引言 本节将介绍概率生成模型——标准流模型(Normalizing Flow\text{Normalizing Flow}Normalizi…...
MIT:只需一层RF传感器,就能为AR头显赋予“X光”穿透视力
近年来,AR在仓库、工厂等场景得到应用,比如GlobalFoundries、亚马逊、菜鸟裹裹就使用摄像头扫描定位货品,并使用AR来导航和标记。目前,这种方案主要基于视觉算法,因此仅能定位视线范围内的目标。然而,在一些…...
对 Dom 树的理解
什么是 DOM 从网络传给渲染引擎的 HTML 文件字节流是无法直接被渲染引擎理解的,所以要将其转化为渲染引擎能够理解的内部结构,这个结构就是 DOM。 DOM 提供了对 HTML 文档结构化的表述。 在渲染引擎中,DOM 有三个层面的作用: …...
电商搜索入门
一、搜索用途通常一个电商平台里面的商品,少则几十万多则上千万甚至上亿的sku,在这么多的商品中,如何让用户可以快速查找到自己想要的商品,那么就需要用到搜索功能来实现。通过分析数据发现,接近40%的点击率是直接通过…...
4.3.1初阶数据结构(C语言)(无头不循环单链表)
1.完整的单链表注释: #pragma once #define _CRT_SECURE_NO_WARNINGS 1 #include<stdio.h> #include<stdlib.h>typedef int SLTDateType; // 重定义数据类型typedef struct SListNode // 定义结构体类型的节点 {SLTDateType data;str…...
一文深度解读音视频行业技术发展历程
从1948年的香农定律,到音视频的今天。IMMENSE、36氪|作者 北京时间2月28日凌晨,FIFA年度颁奖典礼在巴黎举行。梅西荣膺年度最佳球员,斯卡洛尼当选年度最佳男足主帅,马丁内斯荣获年度最佳男足门将!阿根廷因…...
面向对象拓展贴
1. 类和对象的内存分配机制 1.1 分配机制 Java 内存的结构分析 栈: 一般存放基本数据类型(局部变量)堆: 存放对象(Cat cat , 数组等)方法区:常量池(常量,比如字符串), 类加载信息示意图 [Cat (name, age, price)]…...
Android仿QQ未读消息拖拽粘性效果
效果图原理分析首先是在指定某个位置画一个圆出来,手指按到这个圆的时候再绘制一个可以根据手指位置移动的圆,随着手指的移动两个圆逐渐分离,分离的过程中两圆中间出现连接带,随着两圆圆心距的增大,半径也是根据某一比…...
Linux 打包压缩解压指令 gzip bzip2 tar
总结自鸟哥Linux私房菜 Linux压缩文件的扩展名大多是:“.tar, .tar.gz, .tgz, .gz, .Z, .bz2, *.xz”, 不同压缩文件使用了不同的算法,不能通用压缩或解压 常见扩展名: *.Z compress 程序压缩的文件; *.zip zip 程序…...
系统升级丨分享返佣,助力商企实现低成本高转化营销
秉承助力传统经济数字化转型的长远理念 酷雷曼VR再次在VR全景营销中发力 创新研发“分享返佣”功能 进一步拓宽商企VR全景营销渠道 助力商企搭建低成本、高传播、高转化 的VR营销体系 01、什么是“分享返佣”? ●“分享返佣”即“推广”返佣,是酷…...
机试代码模板
文章目录进制转换高精度加/乘法搜索BFSDFS树二叉树遍历图Dijkstra算法Kruskal算法动态规划最长公共子序列(LCS)最长上升子序列(LIS)KMP算法进制转换 #include <iostream> #include <string> #include <cmath> #include <iomanip> #include <algori…...
Java性能优化-垃圾回收算法-理解CMS回收器
垃圾回收算法 理解 CMS回收器 三个基本操作 1.回收新生代(同时暂停所有的应用线程) 2.运行并发周期来清理老年代数据 3.如果有必要则FULL GC压缩老年代 当发生新生代回收 , 如果老年代没有足够的空间容纳晋升的对象则执行FULL GC,所有线程停…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
