Python获取最小路径,查找元素在list中的坐标
# coding=utf-8
__author__ = 'Jeff.xie'
def t(li):
pass
获取最小路径
def minPathSum(grid):
if not grid:
return 0
m= len(grid) #m列
n =len(grid[0]) #n行
print(grid[0])
print("m: ",m)
print("n: ",n)
#创建一个二维数组
dp = [[0]*n for _ in range(m)]
print(dp) #这是一个所有值为0的二维数组
dp[0][0] = grid[0][0]#初始化左上角
#初始化第一列,最小和只能从上面到达,且需要加上当前格子的元素值
for i in range(1,m):
dp[i][0] = dp[i-1][0]+grid[i][0]#每一行的第一个元素,得到结果,并且是从原始数据的每一行第一个数据一次累加
print(dp)
#初始化第一行,最小和只能从左边到达,且需要加加上当前格子元素的最小值
for i in range(1,n):
dp[0][i] = dp[0][i-1] + grid[0][i]
print(dp)
#遍历其他地方的格子,路径只能从相邻左方和相邻上方到达,然后比较两者中最小的元素值加上当前网格的值
for i in range(1,m):
for j in range(1,n):
dp[i][j] = min(dp[i-1][j],dp[i][j-1])+grid[i][j] #判断是上边dp[i-1][j]的数据小,还是左边dp[i][j-1]的数据小
print(dp)
return dp[-1][-1]
查找元素在list中的坐标
def searchRange( nums, target):
#在排序数组中查找元素的第一个和最后一个位置
left = -1
right = -1
for i in range(len(nums)):
if nums[i] == target:
left = i
break
if left != -1:
for i in range(left, len(nums)):
if nums[i] == target:
right = i
return [left, right]
def t5(grid):
#获取行和列
row=len(grid)
column = len(grid[0])
print(column)
#初始化一个全部值为0,但是行列都相同的li
li = [[0]*column for i in range(row)] #总共有len(row)行,每一行都是一个list,每个list的元素都赋值为0
print(li)
#初始化左上角
li[0][0]= grid[0][0]
#初始化第一列
for i in range(1,row):
li[i][0]=li[i-1][0]+grid[i][0]
print(li)
#初始化第一行
for i in range(1,column):
li[0][i]= li[0][i-1]+grid[0][i]
print(li)
#填充其他单元格
for i in range(1,row):
for j in range(1,column):
x= min(li[i-1][j],li[i][j-1])
li[i][j]= x+grid[i][j]
print(li)
#最后一个数字就是最小路径
return li[-1][-1]
if __name__ == '__main__':
grid = [[1,3,1],[1,5,1],[4,2,1],[2,3,4]]
# r= minPathSum(grid)
# print(r)
# r= t2(grid)
# print(r)
r3=t3(grid)
print("r3:",r3)
li=[1,2,3,4,5,5,6,7]
r=searchRange(li,6)
print(r)
t5(grid)
相关文章:
Python获取最小路径,查找元素在list中的坐标
# codingutf-8__author__ Jeff.xiedef t(li):pass获取最小路径def minPathSum(grid):if not grid:return 0m len(grid) #m列n len(grid[0]) #n行print(grid[0])print("m: ",m)print("n: ",n)#创建一个二维数组dp [[0]*n for _ in range(m)]print(dp) #这…...

数据采集协同架构,集成马扎克、西门子、海德汉、广数、凯恩帝、三菱、海德汉、兄弟、哈斯、宝元、新代、发那科、华中各类数控以及各类PLC数据采集软件
文章目录 前言一、采集协同架构是什么?可以做什么(数控、PLC配置采集)?二、使用步骤 1.打开软件,配置MQTT或者数据库(支持sqlserver、mysql等)存储转发消息规则2.配置数控系统所采集的参数、转…...

Allegro172版本如何用自带的功能实现快速在1MMBGA下方等距放置电容
Allegro172版本如何用自带的功能实现快速在1MMBGA下方等距放置电容 在做PCB设计的时候,在1MM中心间距的BGA背面放置电容,是非常常见的设计,如何快速把电容等距放在BGA下方,除了借助辅助工具外,在Allegro升级到了172版本的时候,可以借助本身自带的功能实现快速放置,以下图…...
一种简单的统计pytorch模型参数量的方法
nelememt()函数Tensor.nelement()->引自Tensor.numel()->引自torch.numel(input)三者的作用是相同的Returns the total number of elements in the inputtensor.返回当前tensor的元素数量利用上面的函数刚好可以统计模型的参数数量parameters()函数Module.parameters(rec…...

【PyTorch】教程:对抗学习实例生成
ADVERSARIAL EXAMPLE GENERATION 研究推动 ML 模型变得更快、更准、更高效。设计和模型的安全性和鲁棒性经常被忽视,尤其是面对那些想愚弄模型故意对抗时。 本教程将提供您对 ML 模型的安全漏洞的认识,并将深入了解对抗性机器学习这一热门话题。在图像…...
中国区使用Open AI账号试用Chat GPT指南
最近推出强大的ChatGPT功能,各大程序员使用后发出感叹:程序员要失业了 不过在国内并不支持OpenAI账号注册,多数会提示: OpenAI’s services are not available in your country. 经过一番搜索后,发现如下方案可以完…...

STM32开发(9)----CubeMX配置外部中断
CubeMX配置外部中断前言一、什么是中断1.STM32中断架构体系2.外部中断/事件控制器(EXTI)3.嵌套向量中断控制器(NIVC)二、实验过程1.CubeMX配置2.代码实现3.硬件连接4.实验结果总结前言 本章介绍使用STM32CubeMX对引脚的外部中断进…...

Nextjs了解内容
目录Next.jsnext.js的实现1,nextjs初始化2, 项目结构3, 数据注入getInitialPropsgetServerSidePropsgetStaticProps客户端注入3,CSS Modules4,layout组件5,文件式路由6,BFF层的文件式路由7&…...

从事功能测试1年,裸辞1个月,找不到工作的“我”怎么办?
做功能测试一年多了裸辞职一个月了,大部分公司都要求有自动化测试经验,可是哪来的自动化测试呢? 我要是简历上写了吧又有欺诈性,不写他们给的招聘又要自动化优先,将项目带向自动化不是一个容易的事情,很多…...

机器学习基本原理总结
本文大部分内容参考《深度学习》书籍,从中抽取重要的知识点,并对部分概念和原理加以自己的总结,适合当作原书的补充资料阅读,也可当作快速阅览机器学习原理基础知识的参考资料。 前言 深度学习是机器学习的一个特定分支。我们要想…...

JVET-AC0315:用于色度帧内预测的跨分量Merge模式
ECM采用了许多跨分量的预测(Cross-componentprediction,CCP)模式,包括跨分量包括跨分量线性模型(CCLM)、卷积跨分量模型(CCCM)和梯度线性模型(GLM)࿰…...
Session与Cookie的区别(二)
脸盲症的困扰 小明身为杂货店的店长兼唯一的店员,所有大小事都是他一个人在处理。传统杂货店跟便利商店最大的差别在哪里?在于人情味。 就像是你去菜市场买菜的时候会被说帅哥或美女,或者是去买早餐的时候老板会问你:「一样&#…...

疫情开发,软件测试行情趋势是怎么样的?
如果说,2022年对于全世界来说,都是一场极大的挑战的话;那么,2023年绝对是机遇多多的一年。众所周知,随着疫情在全球范围内逐步得到控制,无论是国际还是国内的环境,都会呈现逐步回升的趋势&#…...
Java中间件描述与使用,面试可以用
myCat 用于切分mysql数据库(为什么要切分:当数据量过大时,mysql查询效率变低) ActiveMQ 订阅,消息推送 swagger 前后端分离,后台接口调式 dubbo 阿里的面向服务RPC框架,为什么要面向服务&#x…...
[OpenMMLab]AI实战营第七节课
语义分割代码实战教学 HRNet 高分辨率神经网络 安装配置 # 选择分支 git branch -a git switch 3.x # 配置环境 conda create -n mmsegmentation python3.8 conda activate mmsegmentation pip install torch1.11.0cu113 torchvision0.12.0cu113 torchaudio0.11.0 --extra-i…...

面向对象的设计模式
"万丈高楼平地起,7种模式打地基",模式是一种规范,我们应该站在巨人的肩膀上越看越远,接下来,让我们去仔细了解了解面向对象的7种设计模式7种设计模式设计原则的核心思想:找出应用中可能需要变化之…...
里氏替换原则|SOLID as a rock
文章目录 意图动机:违反里氏替换原则解决方案:C++中里氏替换原则的例子里氏替换原则的优点1、可兼容性2、类型安全3、可维护性在C++中用好LSP的标准费几句话本文是关于 SOLID as Rock 设计原则系列的五部分中的第三部分。 SOLID 设计原则侧重于开发 易于维护、可重用和可扩展…...
【C++】右左法则,指针、函数与数组
右左法则——判断复杂的声明对于一个复杂的声明,可以用右左法则判断它是个什么东西:1.先找到变量名称2.从变量名往右看一个部分,再看变量名左边的一个部分3.有小括号先看小括号里面的,一层一层往外看4.先看到的东西优先级大&#…...

打通数据价值链,百分点数据科学基础平台实现数据到决策的价值转换 | 爱分析调研
随着企业数据规模的大幅增长,如何利用数据、充分挖掘数据价值,服务于企业经营管理成为当下企业数字化转型的关键。 如何挖掘数据价值?企业需要一步步完成数据价值链条的多个环节,如数据集成、数据治理、数据建模、数据分析、数据…...

C++之多态【详细总结】
前言 想必大家都知道面向对象的三大特征:封装,继承,多态。封装的本质是:对外暴露必要的接口,但内部的具体实现细节和部分的核心接口对外是不可见的,仅对外开放必要功能性接口。继承的本质是为了复用&#x…...

【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...

基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...