当前位置: 首页 > news >正文

数理统计的基本概念(二)

文章目录

抽样分布

所谓抽样分布是指统计量的概率分布。确定统计量的分布是数理统计学的基本问题之一。

几个重要分布

Γ \Gamma Γ 分布

若随机变量 X X X 具有概率密度 f ( x ; α , λ ) = { λ α Γ ( α ) x α − 1 e − λ x , x > 0 0 , x ≤ 0 f(x;\alpha,\lambda)=\begin{cases} \frac{\lambda^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}, &x>0 \\ 0, &x\le0 \end{cases} f(x;α,λ)={Γ(α)λαxα1eλx,0,x>0x0则称 X X X 服从参数为 α 、 λ \alpha、\lambda αλ Γ \Gamma Γ 分布,记为 X ∼ Γ ( α , λ ) X\sim \Gamma(\alpha, \lambda) XΓ(α,λ),其中 α > 0 , λ > 0 \alpha >0,\lambda >0 α>0,λ>0 为参数。

Γ \Gamma Γ 分布具有下列性质:

  1. X ∼ Γ ( α , λ ) X\sim \Gamma(\alpha, \lambda) XΓ(α,λ),则 E ( X ) = α / λ , D ( x ) = α / λ 2 . E(X)=\alpha/\lambda, D(x)=\alpha/\lambda^2. E(X)=α/λ,D(x)=α/λ2.
  2. 可加性。若 X i ∼ Γ ( α i , λ ) , i = 1 , . . . , n X_i\sim \Gamma(\alpha_i, \lambda),i=1,...,n XiΓ(αi,λ),i=1,...,n,且 X 1 , . . . , X n X_1,...,X_n X1,...,Xn 相互独立,则 X 1 + . . . + X n ∼ Γ ( α 1 + . . . + α n , λ ) X_1+...+X_n\sim\Gamma(\alpha_1+...+\alpha_n,\lambda) X1+...+XnΓ(α1+...+αn,λ)
  3. Γ \Gamma Γ 分布中取 α = 1 \alpha=1 α=1,即得指数分布 Exp ( λ ) \text{Exp}(\lambda) Exp(λ) f ( x ; λ ) = { λ e − λ x , x > 0 0 , x ≤ 0 f(x;\lambda)=\begin{cases} \lambda e^{-\lambda x}, &x>0 \\ 0, &x\le0 \end{cases} f(x;λ)={λeλx,0,x>0x0 由此可得性质 2 的一个推论:若 X 1 , . . . , X n X_1,...,X_n X1,...,Xn i.i.d. \text{i.i.d.} i.i.d.,且 X 1 ∼ Exp ( λ ) X_1\sim \text{Exp}(\lambda) X1Exp(λ),则 ∑ i = 1 n X i ∼ Γ ( n , λ ) \sum_{i=1}^nX_i \sim \Gamma(n,\lambda) i=1nXiΓ(n,λ)

β \beta β 分布

若随机变量 X X X 具有概率密度 f ( x ; a , b ) = { x a − 1 ( 1 − x ) b − 1 B ( a , b ) , 0 < x < 1 0 , 其他 f(x;a,b)=\begin{cases} \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)}, &0<x<1 \\ 0, &其他 \end{cases} f(x;a,b)={B(a,b)xa1(1x)b1,0,0<x<1其他则称 X X X 服从参数为 a 、 b a、b ab β \beta β 分布,记为 X ∼ β ( a , b ) X\sim \beta(a,b) Xβ(a,b),其中 a > 0 , b > 0 a >0,b >0 a>0,b>0 为参数, B ( a , b ) B(a,b) B(a,b) β \beta β 函数。

β \beta β 分布具有下列性质:

  1. X ∼ β ( a , b ) X\sim \beta(a,b) Xβ(a,b),则 E ( X ) = a a + b , D ( X ) = a b ( a + b ) 2 ( a + b + 1 ) E(X)=\frac{a}{a+b},D(X)=\frac{ab}{(a+b)^2(a+b+1)} E(X)=a+ba,D(X)=(a+b)2(a+b+1)ab
  2. X ∼ Γ ( a , 1 ) , Y ∼ Γ ( b , 1 ) X\sim \Gamma(a,1),Y\sim \Gamma(b,1) XΓ(a,1),YΓ(b,1),且 X , Y X,Y X,Y 相互独立,则 Z = X X + Y ∼ β ( a , b ) Z=\frac{X}{X+Y}\sim \beta(a,b) Z=X+YXβ(a,b)

χ 2 \chi^2 χ2 分布

若随机变量 X X X 具有概率密度 χ 2 ( x ; n ) = { x n / 2 − 1 e − x / 2 2 n / 2 Γ ( n / 2 ) , x > 0 0 , x ≤ 0 \chi^2(x;n)=\begin{cases} \frac{x^{n/2-1}e^{-x/2}}{2^{n/2}\Gamma(n/2)}, &x>0 \\ 0, &x\le0 \end{cases} χ2(x;n)={2n/2Γ(n/2)xn/21ex/2,0,x>0x0 则称 X X X 服从自由度为 n n n χ 2 \chi^2 χ2 分布,记为 X ∼ χ 2 ( n ) X\sim \chi^2(n) Xχ2(n)

χ 2 \chi^2 χ2 分布具有下列性质:

  1. X ∼ χ 2 ( n ) X\sim \chi^2(n) Xχ2(n),则 E ( X ) = n , D ( X ) = 2 n E(X)=n,D(X)=2n E(X)=n,D(X)=2n
  2. 可加性。若 X i ∼ χ 2 ( n i ) , i = 1 , . . . , k X_i \sim \chi^2(n_i),i=1,...,k Xiχ2(ni),i=1,...,k,且 X 1 , . . . , X k X_1,...,X_k X1,...,Xk 相互独立,则 X 1 + . . . + X n ∼ χ 2 ( n 1 + . . . + n k ) X_1+...+X_n\sim \chi^2(n_1+...+n_k) X1+...+Xnχ2(n1+...+nk)

设随机变量 X 1 , . . . , X n X_1,...,X_n X1,...,Xn 相互独立,且都服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1),则随机变量 χ 2 = ∑ i = 1 n X i 2 \chi^2=\sum_{i=1}^n X_i^2 χ2=i=1nXi2 服从自由度为 n n n χ 2 \chi^2 χ2 分布。

t t t 分布

t t t 分布又称学生分布,随机变量 T T T 服从自由度为 n n n t t t 分布记为 T ∼ t ( n ) T\sim t(n) Tt(n)

t t t 分布的概率密度关于 x = 0 x=0 x=0 对称,并且当 ∣ x ∣ → + ∞ |x|\to +\infty x+ 时单调下降地趋于 0,且当自由度 n → + ∞ n\to +\infty n+ 时,自由度为 n n n t t t 分布收敛于标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1)

X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X\sim N(0,1),Y\sim \chi^2(n) XN(0,1),Yχ2(n),且 X X X Y Y Y相互独立,则 T = X Y / n ∼ t ( n ) T=\frac{X}{\sqrt{Y/n}}\sim t(n) T=Y/n Xt(n)

F F F 分布

随机变量 F F F 服从自由度为 ( n 1 , n 2 ) (n_1,n_2) (n1,n2) F F F 分布记为 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) FF(n1,n2)

X ∼ χ 2 ( n 1 ) , Y ∼ χ 2 ( n 2 ) X\sim \chi^2(n_1),Y\sim \chi^2(n_2) Xχ2(n1),Yχ2(n2),且 X X X Y Y Y相互独立,则 F = X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) F=\frac{X/n_1}{Y/n_2} \sim F(n_1,n_2) F=Y/n2X/n1F(n1,n2)

在上述定理的条件下, F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) FF(n1,n2),则 1 F ∼ F ( n 2 , n 1 ) \frac{1}{F} \sim F(n_2,n_1) F1F(n2,n1)


分位数

设随机变量 X X X 的分布函数为 F ( x ) = P ( X ≤ x ) F(x)=P(X\le x) F(x)=P(Xx),对于 0 < p < 1 0<p<1 0<p<1,若有 x p x_p xp 满足 P ( X ≤ x p ) = F ( x p ) = p P(X\le x_p)=F(x_p)=p P(Xxp)=F(xp)=p 则称 x p x_p xp 为分布 F ( x ) F(x) F(x) (或随机变量 X X X)的下侧 p p p 分位数;对于 0 < α < 1 0<\alpha <1 0<α<1,若有 y α y_\alpha yα 满足 P ( X > y α ) = 1 − F ( y α ) = α P(X>y_\alpha)=1-F(y_\alpha)=\alpha P(X>yα)=1F(yα)=α 则称 y α y_\alpha yα 为分布 F ( x ) F(x) F(x) (或随机变量 X X X)的上侧 α \alpha α 分位数

由定义可知, y α = x 1 − α ; x p = y 1 − p y_\alpha=x_{1-\alpha}; x_p=y_{1-p} yα=x1α;xp=y1p

  1. N ( 0 , 1 ) N(0,1) N(0,1) 分布及 t t t 分布的对称性可知 u 1 − α = − u α , t 1 − α ( n ) = − t α ( n ) u_{1-\alpha}=-u_\alpha,t_{1-\alpha}(n)=-t_\alpha(n) u1α=uα,t1α(n)=tα(n)
  2. F α ( n 1 , n 2 ) = 1 F 1 − α ( n 2 , n 1 ) F_\alpha(n_1,n_2)=\frac{1}{F_{1-\alpha}(n_2,n_1)} Fα(n1,n2)=F1α(n2,n1)1

参考文献

[1] 《应用数理统计》,施雨,西安交通大学出版社。

相关文章:

数理统计的基本概念(二)

文章目录 抽样分布几个重要分布 Γ \Gamma Γ 分布 β \beta β 分布 χ 2 \chi^2 χ2 分布 t t t 分布 F F F 分布 分位数 参考文献 抽样分布 所谓抽样分布是指统计量的概率分布。确定统计量的分布是数理统计学的基本问题之一。 几个重要分布 Γ \Gamma Γ 分布 若随机变量 …...

CountDownLatch和CyclicBarrier

JUC&#xff08;Java.util.concurrent&#xff09;是Java 5中引入的一个并发编程库&#xff0c;它包含了许多用于多线程处理的工具类和接口。JUC主要提供了以下特性&#xff1a; 线程池&#xff1a;线程池可以提高线程的使用效率&#xff0c;避免频繁地创建和销毁线程&#xff…...

云原生正在重塑软件的整个生命周期(内附资料)

随着企业数字化转型进程的发展&#xff0c;企业面临着新旧商业形态的剧变&#xff0c;颠覆和重构时刻都在发生。 企业需要更加快速地感知用户侧的需求变化并做出调整&#xff0c;才有可能在竞争中持续积累优势。业务的个性化、敏捷化、智能化需求日益突显&#xff0c;数字化应…...

Node.js环境配置级安装vue-cli脚手架

一、下载安装Node.js (略) 二、验证node.js并配置 1、下载安装后&#xff0c;cmd面板输入node -v查询版本、npm -v ,查看npm是否安装成功&#xff08;有版本号就行了&#xff09; 2、选择npm镜像&#xff08;npm config set registry https://registry.npm.taobao.org&…...

十七、Rust集成MQTT Client

1、信息整理 目前了解到的Rust MQTT项目有&#xff1a; bytebeamio/rumqtt 1.3k star、717 commits、Contributors 78、tokio、futures、tls、rumqttc&#xff08;client&#xff09;&#xff1a;cargo add rumqttc https://github.com/bytebeamio/rumqtt/tree/main/rumqttc ru…...

HarmonyOS ArkTS开发语言介绍(三)

1 引言 Mozilla创造了JS&#xff0c;Microsoft创建了TS&#xff0c;Huawei进一步推出了ArkTS。 从最初的基础的逻辑交互能力&#xff0c;到具备类型系统的高效工程开发能力&#xff0c;再到融合声明式UI、多维状态管理等丰富的应用开发能力&#xff0c;共同组成了相关的演进脉…...

[架构之路-247]:目标系统 - 设计方法 - 软件工程 - 结构化方法的基本思想、本质、特点以及在软件开发、在生活中的应用

目录 前言&#xff1a; 一、什么是非结构化方法 1.1 什么是非结构化方法 1.2 非结构化方法的适用场合 二、什么是结构化方法 1.1 结构化方法诞生的背景&#xff1a;软件规模发展&#xff1a;大规模、复杂系统的需要 1.2 概述 1.3 主要特点与核心思想 三、结构化方法在…...

大模型的交互能力

摘要&#xff1a; 基础大模型显示出明显的潜力&#xff0c;可以改变AI系统的开发人员和用户体验&#xff1a;基础模型降低了原型设计和构建AI应用程序的难度阈值&#xff0c;因为它们在适应方面的样本效率&#xff0c;并提高了新用户交互的上限&#xff0c;因为它们的多模式和生…...

80%测试员被骗,关于jmeter 的一个弥天大谎!

jmeter是目前大家都喜欢用的一款性能测试工具&#xff0c;因为它小巧、简单易上手&#xff0c;所以很多人都愿意用它来做接口测试或者性能测试&#xff0c;因此&#xff0c;在目前企业中&#xff0c;使用各个jmeter的版本都有&#xff0c;其中以jmeter3.x、4.x的应该居多。 但是…...

Git——感谢尚硅谷官方文档

Git——尚硅谷学习笔记 第1章 Git 概述1.1 何为版本控制1.2 为什么需要版本控制1.3 版本控制工具1.4 Git 简史1.5 Git 工作机制1.6 Git 和代码托管中心 第2章 Git 安装第 3 章 Git 常用命令3.1 设置用户签名3.2 初始化本地库3.3 查看本地库状态3.4 添加暂存区3.4.1 将工作区的文…...

Java WebSocket框架

引言 随着互联网和移动互联网的迅猛发展&#xff0c;实时通信成为了应用程序的一项重要能力。WebSocket作为一种在Web上实现双向通信的协议&#xff0c;极大地丰富了Web应用程序的交互方式。而在Java领域&#xff0c;也有许多优秀的WebSocket框架可供选择&#xff0c;本文将介…...

C#实现本地服务器客户端私聊通信

&#xff08;一&#xff09;需求 在游戏中我们经常能够看到玩家与玩家之间可以进行私聊&#xff0c;在QQ或微信中最基本的功能就是用户与用户之间的通信。抽象成计算机网络&#xff0c;就是两个客户端通过服务器进行私聊通信&#xff0c;两个客户端可以互相看到对方发送过来的信…...

PyTorch 之 Dataset 类入门学习

PyTorch 之 Dataset 类入门学习 Dataset 类简介 PyTorch 中的 Dataset 类是一个抽象类&#xff0c;用来表示数据集。通过继承 Dataset 类可以进行自定义数据集的格式、大小和其它属性&#xff0c;供后续使用&#xff1b; 可以看到官方封装好的数据集也是直接或间接的继承自 …...

Java update scheduler

引言 Java 更新调度器是 Java 中的一个特性&#xff0c;可以自动化 Java 应用程序的更新过程。它提供了一种方便的方式来安排 Java 应用程序的更新&#xff0c;确保其与最新的功能、错误修复和安全补丁保持同步。本文将深入介绍如何使用 Java 更新调度器&#xff0c;并解释它对…...

常见树种(贵州省):006栎类

摘要&#xff1a;本专栏树种介绍图片来源于PPBC中国植物图像库&#xff08;下附网址&#xff09;&#xff0c;本文整理仅做交流学习使用&#xff0c;同时便于查找&#xff0c;如有侵权请联系删除。 图片网址&#xff1a;PPBC中国植物图像库——最大的植物分类图片库 一、麻栎 …...

拓扑排序-

有向无环图是拓扑排序 拓扑排序将图中所有的顶点排成一个线性序列&#xff0c;使得所有的有向边均从序列的前面指向后面。 拓扑排序使用深度优先搜索来实现&#xff0c;图中有环则无法进行拓扑排序 一个有向图&#xff0c;如果图中有入度为0的点&#xff0c;就把这个点删掉…...

Oracle数据库如何定位trace file位置

用一个示例来说明吧。 在导入master key时&#xff0c;出现错误&#xff1a; ADMINISTER KEY MANAGEMENTIMPORT KEYS WITH SECRET "my_secret"FROM /tmp/export.expIDENTIFIED BY keypwd5 WITH BACKUP; ADMINISTER KEY MANAGEMENT * ERROR at line 1: ORA-46655…...

电脑盘符错乱,C盘变成D盘怎么办?

在一些特殊情况下&#xff0c;磁盘盘符会出现错乱&#xff0c;C盘可能会变成D盘。那么&#xff0c;这该怎么办呢&#xff1f;下面我们就来了解一下。 通过磁盘管理更改盘符 磁盘管理是Windows自带的工具&#xff0c;它位于“计算机管理”的控制台中。管理硬盘及其所包含的卷或…...

Android WMS——客户端输入事件处理(十九)

前面的文章我们介绍了 WMS 中的输入服务的启动及事件处理,这一篇我们来看一下客户端对输入事件的处理。 一、事件初始化 事件的初始化就是在添加窗口的过程。 1、ViewRootImpl 源码位置:/frameworks/base/core/java/android/view/ViewRootImpl.java public void setView(…...

Python基础学习__测试报告

# 使用pycharm生成报告:只有在单独执行一个TestCase文件时可以生成,使用TestSuite等就不能用了 # 使用第三方的测试报告:例如:HTMLTestRunner第三方类库 #使用HTMLTestRunner这个执行对象# 1.获取第三方的测试运行类Runner模块(一个py文件),将其放在代码目录下 # 2.导包:unitte…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...