RuntimeError: PyPI no longer supports ‘pip search‘ (or XML-RPC search).
RuntimeError: PyPI no longer supports ‘pip search’ (or XML-RPC search).
1. ERROR: XMLRPC request failed
Deprecated Methods
https://warehouse.pypa.io/api-reference/xml-rpc.html#deprecated-methods
PyPI XMLRPC Search Disabled
https://status.python.org/incidents/grk0k7sz6zkp
(base) yongqiang@yongqiang:~$ pip search scikit-learn
ERROR: XMLRPC request failed [code: -32500]
RuntimeError: PyPI no longer supports 'pip search' (or XML-RPC search). Please use https://pypi.org/search (via a browser) instead. See https://warehouse.pypa.io/api-reference/xml-rpc.html#deprecated-methods for more information.
(base) yongqiang@yongqiang:~$
Permanently deprecated and disabled due to excessive traffic driven by unidentified traffic, presumably automated.
由于未知流量驱动的流量过多 (可能是自动化的),因此永久弃用和禁用。
XMLRPC Search has been permanently disabled.
1.1. InconsistentVersionWarning: Trying to unpickle estimator DecisionTreeRegressor from version 0.23.1 when using version 1.3.2.
(base) yongqiang@yongqiang:~$ nn-meter predict --predictor cortexA76cpu_tflite21 --predictor-version 1.0 --tensorflow /home/yongqiang/yongqiang_work/nn-Meter/material/testmodels/mobilenetv3small_0.pb
(nn-Meter) checking local kernel predictors at /home/yongqiang/.nn_meter/data/predictor/cortexA76cpu_tflite21
(nn-Meter) load predictor /home/yongqiang/.nn_meter/data/predictor/cortexA76cpu_tflite21/dwconv-bn-relu.pkl
/home/yongqiang/miniconda3/lib/python3.11/site-packages/sklearn/base.py:348: InconsistentVersionWarning: Trying to unpickle estimator DecisionTreeRegressor from version 0.23.1 when using version 1.3.2. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:
https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitationswarnings.warn(
Traceback (most recent call last):File "/home/yongqiang/miniconda3/bin/nn-meter", line 8, in <module>sys.exit(nn_meter_cli())^^^^^^^^^^^^^^File "/home/yongqiang/miniconda3/lib/python3.11/site-packages/nn_meter/utils/nn_meter_cli/interface.py", line 266, in nn_meter_cliargs.func(args)File "/home/yongqiang/miniconda3/lib/python3.11/site-packages/nn_meter/utils/nn_meter_cli/predictor.py", line 39, in apply_latency_predictor_clipredictor = load_latency_predictor(args.predictor, args.predictor_version)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/home/yongqiang/miniconda3/lib/python3.11/site-packages/nn_meter/predictor/nn_meter_predictor.py", line 66, in load_latency_predictorkernel_predictors, fusionrule = loading_to_local(pred_info, os.path.join(user_data_folder, 'predictor'))^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/home/yongqiang/miniconda3/lib/python3.11/site-packages/nn_meter/predictor/utils.py", line 39, in loading_to_localmodel = pickle.load(f)^^^^^^^^^^^^^^File "sklearn/tree/_tree.pyx", line 728, in sklearn.tree._tree.Tree.__setstate__File "sklearn/tree/_tree.pyx", line 1434, in sklearn.tree._tree._check_node_ndarray
ValueError: node array from the pickle has an incompatible dtype:
- expected: {'names': ['left_child', 'right_child', 'feature', 'threshold', 'impurity', 'n_node_samples', 'weighted_n_node_samples', 'missing_go_to_left'], 'formats': ['<i8', '<i8', '<i8', '<f8', '<f8', '<i8', '<f8', 'u1'], 'offsets': [0, 8, 16, 24, 32, 40, 48, 56], 'itemsize': 64}
- got : [('left_child', '<i8'), ('right_child', '<i8'), ('feature', '<i8'), ('threshold', '<f8'), ('impurity', '<f8'), ('n_node_samples', '<i8'), ('weighted_n_node_samples', '<f8')]
(base) yongqiang@yongqiang:~$
1.2. pip uninstall scikit-learn
(base) yongqiang@yongqiang:~$ pip uninstall scikit-learn
Found existing installation: scikit-learn 1.3.2
Uninstalling scikit-learn-1.3.2:Would remove:/home/yongqiang/miniconda3/lib/python3.11/site-packages/scikit_learn-1.3.2.dist-info/*/home/yongqiang/miniconda3/lib/python3.11/site-packages/scikit_learn.libs/libgomp-a34b3233.so.1.0.0/home/yongqiang/miniconda3/lib/python3.11/site-packages/sklearn/*
Proceed (Y/n)? ySuccessfully uninstalled scikit-learn-1.3.2
(base) yongqiang@yongqiang:~$
1.3. pip search scikit-learn
(base) yongqiang@yongqiang:~$ pip search scikit-learn
ERROR: XMLRPC request failed [code: -32500]
RuntimeError: PyPI no longer supports 'pip search' (or XML-RPC search). Please use https://pypi.org/search (via a browser) instead. See https://warehouse.pypa.io/api-reference/xml-rpc.html#deprecated-methods for more information.
(base) yongqiang@yongqiang:~$
1.4. conda search scikit-learn
使用 conda search scikit-learn 替代 pip search scikit-learn。
(base) yongqiang@yongqiang:~$ conda search scikit-learn
Loading channels: done
# Name Version Build Channel
scikit-learn 0.19.0 py27_nomklh0ffebdf_2 anaconda/pkgs/main
scikit-learn 0.19.0 py27hd893acb_2 anaconda/pkgs/main
scikit-learn 0.19.0 py35_nomklh375dd1d_2 anaconda/pkgs/main
scikit-learn 0.19.0 py35h25e8076_2 anaconda/pkgs/main
scikit-learn 0.19.0 py36_nomklh41feb14_2 anaconda/pkgs/main
scikit-learn 0.19.0 py36h97ac459_2 anaconda/pkgs/main
scikit-learn 0.19.1 py27_nomklh6479e79_0 anaconda/pkgs/main
scikit-learn 0.19.1 py27_nomklh6cfcb94_0 anaconda/pkgs/main
scikit-learn 0.19.1 py27h445a80a_0 anaconda/pkgs/main
scikit-learn 0.19.1 py27hedc7406_0 anaconda/pkgs/main
scikit-learn 0.19.1 py35_nomklh26d41a3_0 anaconda/pkgs/main
scikit-learn 0.19.1 py35hbf1f462_0 anaconda/pkgs/main
scikit-learn 0.19.1 py36_nomklh27f7947_0 anaconda/pkgs/main
scikit-learn 0.19.1 py36_nomklh6cfcb94_0 anaconda/pkgs/main
scikit-learn 0.19.1 py36h7aa7ec6_0 anaconda/pkgs/main
scikit-learn 0.19.1 py36hedc7406_0 anaconda/pkgs/main
scikit-learn 0.19.1 py37_nomklh6cfcb94_0 anaconda/pkgs/main
scikit-learn 0.19.1 py37hedc7406_0 anaconda/pkgs/main
scikit-learn 0.19.2 py27h22eb022_0 anaconda/pkgs/main
scikit-learn 0.19.2 py27h4989274_0 anaconda/pkgs/main
scikit-learn 0.19.2 py35h22eb022_0 anaconda/pkgs/main
scikit-learn 0.19.2 py35h4989274_0 anaconda/pkgs/main
scikit-learn 0.19.2 py36h22eb022_0 anaconda/pkgs/main
scikit-learn 0.19.2 py36h4989274_0 anaconda/pkgs/main
scikit-learn 0.19.2 py37h22eb022_0 anaconda/pkgs/main
scikit-learn 0.19.2 py37h4989274_0 anaconda/pkgs/main
scikit-learn 0.20.0 py27h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.0 py27h22eb022_1 anaconda/pkgs/main
scikit-learn 0.20.0 py27h4989274_0 anaconda/pkgs/main
scikit-learn 0.20.0 py27h4989274_1 anaconda/pkgs/main
scikit-learn 0.20.0 py35h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.0 py35h22eb022_1 anaconda/pkgs/main
scikit-learn 0.20.0 py35h4989274_0 anaconda/pkgs/main
scikit-learn 0.20.0 py35h4989274_1 anaconda/pkgs/main
scikit-learn 0.20.0 py36h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.0 py36h22eb022_1 anaconda/pkgs/main
scikit-learn 0.20.0 py36h4989274_0 anaconda/pkgs/main
scikit-learn 0.20.0 py36h4989274_1 anaconda/pkgs/main
scikit-learn 0.20.0 py37h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.0 py37h22eb022_1 anaconda/pkgs/main
scikit-learn 0.20.0 py37h4989274_0 anaconda/pkgs/main
scikit-learn 0.20.0 py37h4989274_1 anaconda/pkgs/main
scikit-learn 0.20.1 py27h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.1 py27h4989274_0 anaconda/pkgs/main
scikit-learn 0.20.1 py27hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.20.1 py36h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.1 py36h4989274_0 anaconda/pkgs/main
scikit-learn 0.20.1 py36hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.20.1 py37h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.1 py37h4989274_0 anaconda/pkgs/main
scikit-learn 0.20.1 py37hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.20.2 py27h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.2 py27hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.20.2 py36h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.2 py36hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.20.2 py37h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.2 py37hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.20.3 py27h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.3 py27hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.20.3 py36h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.3 py36hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.20.3 py37h22eb022_0 anaconda/pkgs/main
scikit-learn 0.20.3 py37hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.21.1 py36h22eb022_0 anaconda/pkgs/main
scikit-learn 0.21.1 py36hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.21.1 py37h22eb022_0 anaconda/pkgs/main
scikit-learn 0.21.1 py37hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.21.1 py38h22eb022_0 anaconda/pkgs/main
scikit-learn 0.21.1 py38hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.21.2 py36h22eb022_0 anaconda/pkgs/main
scikit-learn 0.21.2 py36hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.21.2 py37h22eb022_0 anaconda/pkgs/main
scikit-learn 0.21.2 py37hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.21.3 py36h22eb022_0 anaconda/pkgs/main
scikit-learn 0.21.3 py36hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.21.3 py37h22eb022_0 anaconda/pkgs/main
scikit-learn 0.21.3 py37hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.22 py36h22eb022_0 anaconda/pkgs/main
scikit-learn 0.22 py36hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.22 py37h22eb022_0 anaconda/pkgs/main
scikit-learn 0.22 py37hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.22 py38h22eb022_0 anaconda/pkgs/main
scikit-learn 0.22 py38hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.22.1 py36h22eb022_0 anaconda/pkgs/main
scikit-learn 0.22.1 py36hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.22.1 py37h22eb022_0 anaconda/pkgs/main
scikit-learn 0.22.1 py37hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.22.1 py38h22eb022_0 anaconda/pkgs/main
scikit-learn 0.22.1 py38hd81dba3_0 anaconda/pkgs/main
scikit-learn 0.23.1 py36h423224d_0 anaconda/pkgs/main
scikit-learn 0.23.1 py36h7ea95a0_0 anaconda/pkgs/main
scikit-learn 0.23.1 py37h423224d_0 anaconda/pkgs/main
scikit-learn 0.23.1 py37h7ea95a0_0 anaconda/pkgs/main
scikit-learn 0.23.1 py38h423224d_0 anaconda/pkgs/main
scikit-learn 0.23.1 py38h7ea95a0_0 anaconda/pkgs/main
scikit-learn 0.23.2 py36h0573a6f_0 anaconda/pkgs/main
scikit-learn 0.23.2 py37h0573a6f_0 anaconda/pkgs/main
scikit-learn 0.23.2 py38h0573a6f_0 anaconda/pkgs/main
scikit-learn 0.23.2 py39ha9443f7_0 anaconda/pkgs/main
scikit-learn 0.24.1 py36ha9443f7_0 anaconda/pkgs/main
scikit-learn 0.24.1 py37ha9443f7_0 anaconda/pkgs/main
scikit-learn 0.24.1 py38ha9443f7_0 anaconda/pkgs/main
scikit-learn 0.24.1 py39ha9443f7_0 anaconda/pkgs/main
scikit-learn 0.24.2 py36ha9443f7_0 anaconda/pkgs/main
scikit-learn 0.24.2 py37ha9443f7_0 anaconda/pkgs/main
scikit-learn 0.24.2 py38ha9443f7_0 anaconda/pkgs/main
scikit-learn 0.24.2 py39ha9443f7_0 anaconda/pkgs/main
scikit-learn 1.0.1 py310h00e6091_0 anaconda/pkgs/main
scikit-learn 1.0.1 py37h51133e4_0 anaconda/pkgs/main
scikit-learn 1.0.1 py38h51133e4_0 anaconda/pkgs/main
scikit-learn 1.0.1 py39h51133e4_0 anaconda/pkgs/main
scikit-learn 1.0.2 py37h51133e4_0 anaconda/pkgs/main
scikit-learn 1.0.2 py37h51133e4_1 anaconda/pkgs/main
scikit-learn 1.0.2 py38h51133e4_0 anaconda/pkgs/main
scikit-learn 1.0.2 py38h51133e4_1 anaconda/pkgs/main
scikit-learn 1.0.2 py39h51133e4_0 anaconda/pkgs/main
scikit-learn 1.0.2 py39h51133e4_1 anaconda/pkgs/main
scikit-learn 1.1.1 py310h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.1.1 py38h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.1.1 py39h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.1.2 py310h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.1.2 py38h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.1.2 py39h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.1.3 py310h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.1.3 py310h6a678d5_1 anaconda/pkgs/main
scikit-learn 1.1.3 py311h6a678d5_1 anaconda/pkgs/main
scikit-learn 1.1.3 py38h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.1.3 py38h6a678d5_1 anaconda/pkgs/main
scikit-learn 1.1.3 py39h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.1.3 py39h6a678d5_1 anaconda/pkgs/main
scikit-learn 1.2.0 py310h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.2.0 py310h6a678d5_1 anaconda/pkgs/main
scikit-learn 1.2.0 py38h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.2.0 py38h6a678d5_1 anaconda/pkgs/main
scikit-learn 1.2.0 py39h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.2.0 py39h6a678d5_1 anaconda/pkgs/main
scikit-learn 1.2.1 py310h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.2.1 py311h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.2.1 py38h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.2.1 py39h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.2.2 py310h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.2.2 py310h6a678d5_1 anaconda/pkgs/main
scikit-learn 1.2.2 py311h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.2.2 py311h6a678d5_1 anaconda/pkgs/main
scikit-learn 1.2.2 py38h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.2.2 py38h6a678d5_1 anaconda/pkgs/main
scikit-learn 1.2.2 py39h6a678d5_0 anaconda/pkgs/main
scikit-learn 1.2.2 py39h6a678d5_1 anaconda/pkgs/main
scikit-learn 1.3.0 py310h1128e8f_0 anaconda/pkgs/main
scikit-learn 1.3.0 py311ha02d727_0 anaconda/pkgs/main
scikit-learn 1.3.0 py312h526ad5a_2 anaconda/pkgs/main
scikit-learn 1.3.0 py38h1128e8f_0 anaconda/pkgs/main
scikit-learn 1.3.0 py39h1128e8f_0 anaconda/pkgs/main
(base) yongqiang@yongqiang:~$
(base) yongqiang@yongqiang:~$ conda install scikit-learn==0.23.1
Retrieving notices: ...working... done
Collecting package metadata (current_repodata.json): done
Solving environment: unsuccessful initial attempt using frozen solve. Retrying with flexible solve.
Collecting package metadata (repodata.json): done
Solving environment: unsuccessful initial attempt using frozen solve. Retrying with flexible solve.
Solving environment: -
Found conflicts! Looking for incompatible packages.
This can take several minutes. Press CTRL-C to abort.
failedUnsatisfiableError: The following specifications were found
to be incompatible with the existing python installation in your environment:Specifications:- scikit-learn==0.23.1 -> python[version='>=3.6,<3.7.0a0|>=3.7,<3.8.0a0|>=3.8,<3.9.0a0']Your python: python=3.11If python is on the left-most side of the chain, that's the version you've asked for.
When python appears to the right, that indicates that the thing on the left is somehow
not available for the python version you are constrained to. Note that conda will not
change your python version to a different minor version unless you explicitly specify
that.The following specifications were found to be incompatible with your system:- feature:/linux-64::__glibc==2.31=0- feature:|@/linux-64::__glibc==2.31=0- scikit-learn==0.23.1 -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']Your installed version is: 2.31(base) yongqiang@yongqiang:~$
References
[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] microsoft / nn-Meter, https://github.com/microsoft/nn-Meter
[3] nn-meter 2.0, https://pypi.org/project/nn-meter/
[4] nn-Meter: Towards Accurate Latency Prediction of Deep-Learning Model Inference on Diverse Edge Devices, https://air.tsinghua.edu.cn/pdf/nn-Meter-Towards-Accurate-Latency-Prediction-of-Deep-Learning-Model-Inference-on-Diverse-Edge-Devices.pdf
相关文章:
RuntimeError: PyPI no longer supports ‘pip search‘ (or XML-RPC search).
RuntimeError: PyPI no longer supports ‘pip search’ (or XML-RPC search). 1. ERROR: XMLRPC request failed Deprecated Methods https://warehouse.pypa.io/api-reference/xml-rpc.html#deprecated-methods PyPI XMLRPC Search Disabled https://status.python.org/inc…...
21款奔驰GLS450升级23P驾驶辅助 提升安全出行
辅助驾驶越来越多的被大家所青睐!为了提升驾驶安全性和舒适便捷性奔驰改装原厂半自动驾驶23P辅助系统 23P智能辅助驾驶系统还是很有必要的,因为在跑高速的时候可以使用23P智能驾驶的自动保持车速,保持车距,车道自动居中行驶以及自…...
iOS越狱检测总结
文章目录 前言检测越狱文件私有目录检测检测越狱软件检测系统目录是否变为链接动态库检测环境变量检测系统调用检测指令集调用检测其他方式检测 前言 在之前的文章中,已经带大家一起制作了一个屏蔽越狱检测的Tweak。本文就和大家一起学习整理一下iOS系统中有哪些越…...
场景驱动的 AI 体验设计:如何让智能 IDE 赋能遗留系统重写
作为 AutoDev 的核心开发,我们不仅在不断丰富 AutoDev 的功能以满足不同公司的定制需求,还在与各种团队进行持续交流。在处理遗留系统时,我们发现程序员们日常工作中需要面对大量使用过时技术、基础设施混乱的系统。 在这个背景下,…...
【封装UI组件库系列】搭建项目及准备工作
封装UI组件库系列第一篇搭建项目 前言 🌟搭建项目 创建工程 基本结构 1.创建8个组件展示页面 2.配置路由文件router/index.js 3.页面布局 🌟总结 前言 在前端开发中,大家可能已经用过各种各样的UI组件库了,现在市面上热…...
C#使用DateTime获取日期和时间
在C#中,DateTime类是用来处理日期和时间的类。它具有许多属性和方法,用于操作和获取日期和时间的不同部分。以下是DateTime类的一些常用属性和方法。 属性: 1、DateTime.Now:获取当前日期和时间。 DateTime currentDateTime D…...
rook-ceph部署
rook是云原生存储编排器,本身不提供存储。 下载 git clone --single-branch --branch v1.11.4 https://github.com/rook/rook.git cd rook/deploy/examples 修改镜像地址images.txt operator方式部署rook kubectl apply -f crds.yaml -f common.yaml -f operator…...
JVM基础- 垃圾回收器
基本介绍 Java虚拟机(JVM)中的垃圾回收器是用来自动管理内存的关键组件。它负责识别并回收不再使用的内存,从而防止内存泄漏。不同的JVM实现提供了多种垃圾回收器,每种回收器都有其特定的使用场景和性能特点。以下是一些常见的JV…...
数理统计的基本概念(二)
文章目录 抽样分布几个重要分布 Γ \Gamma Γ 分布 β \beta β 分布 χ 2 \chi^2 χ2 分布 t t t 分布 F F F 分布 分位数 参考文献 抽样分布 所谓抽样分布是指统计量的概率分布。确定统计量的分布是数理统计学的基本问题之一。 几个重要分布 Γ \Gamma Γ 分布 若随机变量 …...
CountDownLatch和CyclicBarrier
JUC(Java.util.concurrent)是Java 5中引入的一个并发编程库,它包含了许多用于多线程处理的工具类和接口。JUC主要提供了以下特性: 线程池:线程池可以提高线程的使用效率,避免频繁地创建和销毁线程ÿ…...
云原生正在重塑软件的整个生命周期(内附资料)
随着企业数字化转型进程的发展,企业面临着新旧商业形态的剧变,颠覆和重构时刻都在发生。 企业需要更加快速地感知用户侧的需求变化并做出调整,才有可能在竞争中持续积累优势。业务的个性化、敏捷化、智能化需求日益突显,数字化应…...
Node.js环境配置级安装vue-cli脚手架
一、下载安装Node.js (略) 二、验证node.js并配置 1、下载安装后,cmd面板输入node -v查询版本、npm -v ,查看npm是否安装成功(有版本号就行了) 2、选择npm镜像(npm config set registry https://registry.npm.taobao.org&…...
十七、Rust集成MQTT Client
1、信息整理 目前了解到的Rust MQTT项目有: bytebeamio/rumqtt 1.3k star、717 commits、Contributors 78、tokio、futures、tls、rumqttc(client):cargo add rumqttc https://github.com/bytebeamio/rumqtt/tree/main/rumqttc ru…...
HarmonyOS ArkTS开发语言介绍(三)
1 引言 Mozilla创造了JS,Microsoft创建了TS,Huawei进一步推出了ArkTS。 从最初的基础的逻辑交互能力,到具备类型系统的高效工程开发能力,再到融合声明式UI、多维状态管理等丰富的应用开发能力,共同组成了相关的演进脉…...
[架构之路-247]:目标系统 - 设计方法 - 软件工程 - 结构化方法的基本思想、本质、特点以及在软件开发、在生活中的应用
目录 前言: 一、什么是非结构化方法 1.1 什么是非结构化方法 1.2 非结构化方法的适用场合 二、什么是结构化方法 1.1 结构化方法诞生的背景:软件规模发展:大规模、复杂系统的需要 1.2 概述 1.3 主要特点与核心思想 三、结构化方法在…...
大模型的交互能力
摘要: 基础大模型显示出明显的潜力,可以改变AI系统的开发人员和用户体验:基础模型降低了原型设计和构建AI应用程序的难度阈值,因为它们在适应方面的样本效率,并提高了新用户交互的上限,因为它们的多模式和生…...
80%测试员被骗,关于jmeter 的一个弥天大谎!
jmeter是目前大家都喜欢用的一款性能测试工具,因为它小巧、简单易上手,所以很多人都愿意用它来做接口测试或者性能测试,因此,在目前企业中,使用各个jmeter的版本都有,其中以jmeter3.x、4.x的应该居多。 但是…...
Git——感谢尚硅谷官方文档
Git——尚硅谷学习笔记 第1章 Git 概述1.1 何为版本控制1.2 为什么需要版本控制1.3 版本控制工具1.4 Git 简史1.5 Git 工作机制1.6 Git 和代码托管中心 第2章 Git 安装第 3 章 Git 常用命令3.1 设置用户签名3.2 初始化本地库3.3 查看本地库状态3.4 添加暂存区3.4.1 将工作区的文…...
Java WebSocket框架
引言 随着互联网和移动互联网的迅猛发展,实时通信成为了应用程序的一项重要能力。WebSocket作为一种在Web上实现双向通信的协议,极大地丰富了Web应用程序的交互方式。而在Java领域,也有许多优秀的WebSocket框架可供选择,本文将介…...
C#实现本地服务器客户端私聊通信
(一)需求 在游戏中我们经常能够看到玩家与玩家之间可以进行私聊,在QQ或微信中最基本的功能就是用户与用户之间的通信。抽象成计算机网络,就是两个客户端通过服务器进行私聊通信,两个客户端可以互相看到对方发送过来的信…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
Vue 3 + WebSocket 实战:公司通知实时推送功能详解
📢 Vue 3 WebSocket 实战:公司通知实时推送功能详解 📌 收藏 点赞 关注,项目中要用到推送功能时就不怕找不到了! 实时通知是企业系统中常见的功能,比如:管理员发布通知后,所有用户…...
游戏开发中常见的战斗数值英文缩写对照表
游戏开发中常见的战斗数值英文缩写对照表 基础属性(Basic Attributes) 缩写英文全称中文释义常见使用场景HPHit Points / Health Points生命值角色生存状态MPMana Points / Magic Points魔法值技能释放资源SPStamina Points体力值动作消耗资源APAction…...
