torchvision中的标准ResNet50网络结构
注:仅用以记录学习
打印出来的网络结构如下:
from torchvision import models
model = models.resnet50(pretrained=False)
print("model: ", model)
结构:
ResNet((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(layer1): Sequential((0): Bottleneck((conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer2): Sequential((0): Bottleneck((conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(3): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer3): Sequential((0): Bottleneck((conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(3): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(4): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(5): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer4): Sequential((0): Bottleneck((conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))(fc): Linear(in_features=2048, out_features=1000, bias=True)
)
修改最后一层(fc层)代码:
用于特定的分类任务,其中最后一层全连接层的输出类别数量被指定为输入参数
class ResNet50(nn.Module):def __init__(self,num_classes):super().__init__()model = models.resnet50(pretrained=False)num_ftrs = model.fc.in_features #获取ResNet-50模型最后一层全连接层的输入特征数量model.fc = nn.Linear(num_ftrs, num_classes) #将原fc层替换为一个新的全连接层,其中输出特征数量为num_classeslayers = [v for v in model.children()] # 获取ResNet-50模型的所有子模块(层)self.model = nn.Sequential(*layers[:-2]) # 创建一个新的nn.Sequential模块,包含ResNet-50模型的所有子模块,除了最后的两个子模块。这个nn.Sequential模块将用作新模型的主体部分。self.pool = layers[-2] # ResNet-50模型的倒数第二个子模块,即全局平均池化层self.fc = layers[-1] # 获取ResNet-50模型的最后一个子模块,即全连接层def forward(self, x, **kwargs): # 定义前向传播方法x = self.model(x) # [B, C, H, W] # 将输入x通过ResNet-50模型的主体部分传递,得到特征表示outs = Munch()x = self.fc(torch.flatten(self.pool(x), 1)) # 通过全局平均池化的特征进行扁平化,然后通过新的全连接层得到最终的输出outs.sup = xreturn outs
相关文章:
torchvision中的标准ResNet50网络结构
注:仅用以记录学习 打印出来的网络结构如下: from torchvision import models model models.resnet50(pretrainedFalse) print("model: ", model) 结构: ResNet((conv1): Conv2d(3, 64, kernel_size(7, 7), stride(2, 2), padd…...
Java 多线程之 synchronized (互拆锁/排他锁/非观锁)
文章目录 一、概述二、使用方法三、测试示例 一、概述 在Java中,synchronized 关键字用于实现线程之间的同步。提供了一种简单而强大的机制来控制多个线程之间的并发访问,确保共享资源的安全性和一致性。它解决了多线程环境中的竞态条件、数据竞争和内存…...
开源vs闭源大模型如何塑造技术的未来?开源模型的优劣势未来发展方向
开源vs闭源大模型如何塑造技术的未来?开源模型的优劣势&未来发展方向 写在最前面一、开源与闭源:定义与历史背景开源和闭源的定义开源大模型:社区驱动的创新 二、开源和闭源的优劣势比较开源大模型(瓶颈)数据&…...
如何使用无代码系统搭建软件平台?有哪些开源无代码开发平台?
无代码是什么 无代码开发,也称为零代码(Zero Code)开发,是一种技术概念。无代码开发无需代码基础,适合业务人员、IT开发及其他各类人员使用。他们通过无代码开发平台快速构建应用,并适应各种需求变化&#…...
微信怎么设置自动回复?
自动回复的用处 微信自动回复可以提高沟通效率。当你无法立即回复消息时,设置自动回复可以让对方知道你的情况,并且不会因为长时间没有回复而产生误解或不满。 微信自动回复可以节省时间和精力。如果你经常收到类似的询问或回复,通过设置自动…...
基于Vue3的低代码开发平台——JNPF
目录 一、什么是Vue.js ? 二、Jnpf-Web-Vue3 的技术栈介绍 (1)Vue3.x (2)Vue-router4.x (3)Vite4.x (4)Ant-Design-Vue3.x (5)TypeScript &#x…...
Thinkphp6 模型 指定字段自增的方法
tp6要使用Db类必须使用门面方式(think\facade\Db)调用。 use think\facade\Db; 然后,用Db::raw就可以实现指定字段自增了。...
WhatsApp开发客户攻略来袭!还有你不知道的账号解封秘籍!
别人用 WhatsApp 都是订单多到爆单,自己用 WhatsApp 却是订单、客户寥寥无几甚至账号被封?想必外贸从业者在用 WhatsApp 开发客户的时候都有这样的烦恼,今天这篇文章就和大家聊一聊怎么用 WhatsApp 高效地开发客户。 WhatsApp 开发客户的优势…...
Linux C 基于tcp多线程在线聊天室
多线程在线聊天室 概述客户端服务端 概述 客户端实现了判单用户登录结果、防止单回车字符发送、保存和显示历史聊天记录(仅自己)、退出聊天室功能。 服务端实现了验证用户是否已经存在(支持最大64用户连接)支持广播用户进入退…...
代码随想录算法训练营第23期day60|84.柱状图中最大的矩形
一、84.柱状图中最大的矩形 力扣题目链接 42接雨水 是找每个柱子左右两边第一个大于该柱子高度的柱子,而本题是找每个柱子左右两边第一个小于该柱子的柱子。 本题是要找每个柱子左右两边第一个小于该柱子的柱子,所以从栈头(元素从栈头弹出…...
vue动态获取目录结构进行配置静态路由
文章目录 前言定义项目页面格式一、vite 配置动态路由新建 /router/utils.ts引入 /router/utils.ts 二、webpack 配置动态路由总结如有启发,可点赞收藏哟~ 前言 项目中动态配置路由可以减少路由配置时间,并可减少配置路由出现的一些奇奇怪怪的问题 路由…...
产品工程师工作的职责十篇(合集)
一、岗位职责的作用意义 1.可以最大限度地实现劳动用工的科学配置; 2.有效地防止因职务重叠而发生的工作扯皮现象; 3.提高内部竞争活力,更好地发现和使用人才; 4.组织考核的依据; 5.提高工作效率和工作质量; 6.规范操作行为; 7.减少违章行为和违章事故的发生…...
图片降噪软件 Topaz DeNoise AI mac中文版功能
Topaz DeNoise AI for Mac是一款专业的Mac图片降噪软件。如果你有噪点的相片,可以通过AI智能的方式来处理掉噪点,让照片的噪点降到最 低。有了Topaz DeNoise AI mac版处理图片更方便,更简单。 Topaz DeNoise AI mac软件功能 无任何预约即可在…...
【开源】基于Vue.js的车险自助理赔系统的设计和实现
项目编号: S 018 ,文末获取源码。 \color{red}{项目编号:S018,文末获取源码。} 项目编号:S018,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 角色管理模块2.3 车…...
2023年亚太杯数学建模思路 - 案例:粒子群算法
文章目录 1 什么是粒子群算法?2 举个例子3 还是一个例子算法流程算法实现建模资料 # 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 什么是粒子群算法? 粒子群算法(Pa…...
Android:Google三方库之Firebase集成详细步骤(一)
前提条件 安装最新版本的 Android Studio,或更新为最新版本。使用您的 Google 账号登录 Firebase请注意,依赖于 Google Play 服务的 Firebase SDK 要求设备或模拟器上必须安装 Google Play 服务 将Firebase添加到应用: 方式:使用…...
企业如何选择一款高效的ETL工具
企业如何选择一款高效的ETL工具? 在企业发展至一定规模后,构建数据仓库(Data Warehouse)和商业智能(BI)系统成为重要举措。在这个过程中,选择一款易于使用且功能强大的ETL平台至关重要,因为数…...
vr编辑器可以解决教育教学中的哪些问题
VR编辑器是一种基于虚拟现实技术的教育内容编辑器,可以帮助教师快速创建出高质量的虚拟现实教学内容。 比如在畜牧教学类,通过这个软件,教师可以将真实的动物场景、行为和特征模拟到虚拟现实环境中,让学生在沉浸式的体验中学习动物…...
国外聊天IM — Sendbird
接⼝⽂档: https://sendbird.com/docs 好久没写文章了 我在官网找到的pom, 下载不下来,git下载下来,打进项目里不能用,就只能用简单的http了 直接上代码,只是简单的调通代码,根据你自己业务改:…...
Django与Ajax
目录 一、什么是Ajax 二、Ajax引入 案例 小结 三、前后端数据传输的编码格式(contentType) 【1】form表单 【2】编码格式 【3】Ajax 【4】代码演示 四、Ajax发送JSON格式数据 【1】引入 【2】后端 【3】总结 五、Ajax提交文件数据 【发送文件数据的格式】 【结…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
加密通信 + 行为分析:运营商行业安全防御体系重构
在数字经济蓬勃发展的时代,运营商作为信息通信网络的核心枢纽,承载着海量用户数据与关键业务传输,其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级,传统安全防护体系逐渐暴露出局限性&a…...
Vue 3 + WebSocket 实战:公司通知实时推送功能详解
📢 Vue 3 WebSocket 实战:公司通知实时推送功能详解 📌 收藏 点赞 关注,项目中要用到推送功能时就不怕找不到了! 实时通知是企业系统中常见的功能,比如:管理员发布通知后,所有用户…...
