JVM垃圾回收相关算法
目录
一、前言
二、标记阶段:引用计数算法
三、标记阶段:可达性分析算法
(一)基本思路
(二)GC Roots对象
四、对象的finalization机制
五、MAT与JProfiler的GC Roots溯源
六、清除阶段:标记-清除算法Mark-Sweep
七、清除阶段:复制算法Copying
八、清除阶段:标记-整理算法Mark-Compact
九、对比三种算法
十、分代收集算法
十一、增量收集算法、分区算法
一、前言
对于Java开发人员而言,自动内存管理就像是一个黑匣子,如果过度依赖于“自动”,那么将会是一场灾难,最严重的莫过于弱化Java人员在程序出现内存溢出时定位问题和解决问题的能力。
所以了解JVM的自动内存分配和内存回收原理显得非常重要,在遇见OOM的时候才能快速的根据错误异常日志定位问题和解决问题。
当需要排查各种内存溢出,内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们必须对这些“自动化”的技术实施必要的监控和调节。
垃圾回收器可以对年轻代和老年代进行回收,甚至是全堆和方法区的回收,其中,Java堆时垃圾收集器的工作重点
从次数上讲:频繁手机Young区,较少收集Old区,基本不动方法区
那么什么是垃圾?
垃圾是指运行程序中没有任何指针指向的对象,这个对象就是需要被回收的垃圾
二、标记阶段:引用计数算法
对每个对象保存一个整型的引用计数器属性,用于记录被对象引用的情况。被对象引用了就+1,引用失效就-1,0表示不可能再被使用,可进行回收
优点:实现简单,垃圾便于辨识,判断效率高,回收没有延迟性
缺点:
- 需要单独的字段存储计数器,增加了存储空间的开销
- 每次赋值需要更新计数器,伴随加减法操作,增加了时间开销
- 无法处理循环引用的情况,致命缺陷,导致JAVA的垃圾回收器中没有使用这类算法
引用计数算法,是很多语言的资源回收选择,例如python,它更是同时支持引用计数和垃圾回收机制,python如何解决循环引用
- 手动解除
- 使用弱引用,weakref,python提供的标准库,旨在解决循环引用
三、标记阶段:可达性分析算法
(一)基本思路
可达性分析算法是以根对象(GCRoots)为起始点,按照从上到下的方式搜索被根对象集合所连接的目标对象是否可达
使用可达性分析算法后,内存中存活的对象都被被根对象集合直接或间接连接着,搜索所走过的路径称为引用链。如果目标对象没有任何引用链相连,则是不可达的,意味着该对象已经死亡,可以标记为垃圾对象。
在可达性分析算法中,只有能够被根对象集合直接或者间接连接的对象才是存活的对象
(二)GC Roots对象
根对象(GC Roots)包括以下几种:
- 虚拟机栈中引用的对象,比如:各个线程被调用的方法中使用到的参数、局部变量
- 本地方法栈内JNI,引用的对象
- 方法区中静态属性引用的对象,比如:java类的引用类型静态变量
- 方法区中常量引用的对象,比如:字符串常量池里的引用
- 所有被同步锁synchronized持有的对象
- Java虚拟机内部的引用,比如:基本数据类型对应的class对象,一些常驻的异常对象,如nullpointerException,OOMerror,系统类加载器
- 反映java虚拟机内部情况的JMXBean,JVMTI中注册的回调,本地代码缓存等
- 除了固定的GC Roots集合之外,根据用户选择的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象临时性的加入,共同构成完整GCRoots集合,比如分代收集和局部回收(比如专门针对新生代的回收,那么其他非新生代 对象比如老年代也应该考虑作为root对象。因为新生代中的某些对象有可能被老年代的对象引用。)
如果需要使用可达性分析算法来判断内存是否可回收,那么分析工作必须在一个能保障一致性的快照中进行。这点不满足的话,分析结果的准确性就无法保证。
这也是GC进行时必须STW的一个重要原因,即使是号称几乎不会发生停顿的CMS收集器中,枚举根节点也是必须要停顿的。
四、对象的finalization机制
Java语言提供了对象终止finaliztion机制来允许开发人员提供对象被销毁之前的自定义处理逻辑。当垃圾回收器发现没有引用指向一个对象,即垃圾回收此对象之前,总会先调用这个对象的finalize()方法。
finalize()方法允许在子类中被重写,用于在对象被回收时进行资源释放,通常在这个方法中进行一些资源释放和清理的工作,比如关闭文件,套接字和数据库链接等
对象的三种状态:
- 可触及的:从根节点开始,可以到达这个对象
- 可复活的:对象的所有引用都被释放了,但是对象有可能在finalize()中复活
- 不可触及的:对象的finalize()被调用,并且没有复活,那么就会进入不可触及状态。不可触及的对象不可能被复活,因为finalize()只会被调用一次
- 只有对象再不可触及时才可以被回收
判断一个对象ObjA是否可以被回收,至少需要经历两次标记过程
- 1、如果对象到GCRoots没有引用链,则进行第一次标记
- 2、进行筛选,判断此对象是否有必要执行finalize()方法
- 如果对象A没有重写finalize方法,或者finalize方法已经被虚拟机调用过,则虚拟机视为没有必要执行,对象A被判定为不可触及的
- 如果对象A重写finalize()方法,且还未执行过,那么A会被插入到F-queue队列中,有一个虚拟机自动创建的,低优先级的Finalizer线程触发其finalize()方法执行
- finalize方法是对象逃脱死亡的最后机会,稍后GC会对F-queue队列中的对象进行第二次标记,如果A在finalize方法中与引用链上的任何一个对象建立了联系,那么在第二次标记时,A会被移除即将回收集合。之后,对象会再次出现没有引用存在的情况下,finalize方法不会再被调用,对象直接变为不可触及状态
public class CanRelliveObj {public static CanRelliveObj obj;@Overrideprotected void finalize() throws Throwable {super.finalize();System.out.println("调用当前类重写 finalize 方法");obj = this;}public static void main(String[] args) {try {// 先创建一个对象,分配下内存,不然重来没出现过何来回收一说obj = new CanRelliveObj();obj = null;System.gc(); // 回收时会调用对象的finalize方法,第一次调用成功拯救自己System.out.println("第一次 gc");// 因为Finalizer线程优先级很低,暂停2s,等待它Thread.sleep(2000);if(obj == null) {System.out.println("obj dead");} else {System.out.println("obj is still alive");}System.out.println("第二次 gc");obj = null;System.gc(); // 此时回收对象发现finalize方法已经被调用,所以直接进行回收if(obj == null) {System.out.println("obj dead");} else {System.out.println("obj is still alive");}} catch (Exception e) {}}
}
五、MAT与JProfiler的GC Roots溯源
MAT是Memory Analyzer的简称,是一款功能强大的Java堆内存分析器。用于查找内存泄露以及查看内存消耗情况,基于Eclipse开发的一款免费性能分析工具
可以用于分析GC Roots对象
六、清除阶段:标记-清除算法Mark-Sweep
标记:从引用根节点开始遍历,标记所有被引用的对象,一般是在对象Header中记录为可达对象
注意标记引用对象,不是垃圾对象
清除:对堆内存从头到尾进行线性的遍历,如果发现某个对象在其Header中没有标记为可达对象,则将其回收
缺点
- 效率不算高
- 在GC的时候,需要停止整个应用程序,导致用户体验差。
- 这种方式清理出来的空闲内存不连续,产生内存碎片,需要维护一个空闲列表
何为清除?
所谓的清除并不是真的置空,而是把需要清除的对象地址保存在空闲的地址列表里,下次有新对象需要加载时,判断垃圾的位置空间是否够,如果够就存放。
总结:第一次遍历标记可达对象,第二次遍历清除未标记对象。清除实际上是将未标记对象加入空闲列表,下次有新对象产生,判断空闲列表中垃圾的位置放不放的下,放得下就覆盖。

七、清除阶段:复制算法Copying
为了解决标记-清除算法在垃圾收集效率方面的缺陷——产生内存碎片。1963年出现了复制(Copying)算法
原理:将或者的内存空间分为两块,每次使用其中一块。在垃圾回收时,将正在使用的内存中的存活的对象复制到未被使用的内存块中,之后清除正在使用的内存块中的所有的对象,交换两个内存的角色,最后完成垃圾回收
优点
- 没有标记和清除的过程,实现简单高效
- 复制过去以后的保证空间的连续性,不会出现碎片的问题
缺点
- 需要两倍的内存空间
- 对于G1这种拆分为大量region的GC,复制而不是移动,意味着GC需要维护region之间的引用关系(就像对象的两种),不管是内存占用或者时间开销也不小。
注意:如果系统中的垃圾对象很多,需要复制的存活对象数量并不会太大,或者非常低使用复制算法效率才会高。想一想,如果每次复制都发现垃圾对象很少,基本每次复制都是全部移动,那效率肯定很低。
应用场景:
在新生代,对常规应用的垃圾回收,一次通常可以回收70%-90%的内存空间。回收性价比很高,所以现在的商业虚拟机都是用这种手机算法回收新生代。 (记得from区和to区吗,为什么总有一个区是空的,现在联系起来了。使用的就是是复制算法)

八、清除阶段:标记-整理算法Mark-Compact
标记-整理又叫标记-压缩算法。
背景:复制算法的高效性是建议在存活对象少,垃圾对象多的前提下的。适用于新生代,而老年代大部分对象都是存活对象,所以并不适用,否则复制成本较高。因此,基于老年代垃圾回收的特性,需要使用其他算法。
标记-清除算法可以应用在老年代中,但是该算法不仅执行效率低下,而且执行完内存回收后还会产生内存碎片。所以JVM的设计者在此基础之上进行改进,标记-整理垃圾收集算法诞生了。
执行过程
- 第一个阶段和标记清除算法一样,从根节点开始标记所有被引用的对象
- 第二阶段将所有的存货对象压缩在内存的一端,按照顺序排放,之后清理边界外所有的空间
- 最终效果等同于标记清除算法执行完成后,再进行一次内存碎片整理。
与标记清除算法本质区别,标记清除算法是非移动式的算法,标记压缩是移动式的
优点
- 消除了标记-清除算法内存区域分散的缺点,
- 消除了复制算法中,内存减半的高额代价
缺点
- 从效率上来讲,标记整理算法要低于复制算法
- 移动对象的同时,如果对象被其他对象引用,则还需要调整引用的地址
- 移动的过程中,需要全程暂停用户应用程序,即STW

九、对比三种算法

效率上来说,复制算法是最快的(因为不像标记-清除和标记整理那样需要标记,还有整理),但是浪费了太多的内存。
而标记-整理算法相对来说更加平滑一些,但是效率上不太行,比复制算法多了一个标记的阶段,比标记-清除多了一个整理内存的阶段。
想到了一个问题:复制算法不标记怎么知道一个对象是否存活,是否需要进行复制?
即:复制算法不用进行标记吗?
查阅相关资料后,明白了。复制算法没有像标记-清除和标记-整理两个方法一样有单独的标记过程。因为复制gc只需要把“活”的对象拷贝到survivor,还要mark什么呢?至于怎么判断是“活”的,gc roots以下的不都是“活”的?复制算法是从gc roots开始,遇到活对象就复制走了。gc roots找可达对象的过程结束就复制完了。不像标记算法那样,对于一个对象是否需要回收要满足两个条件:① 对象不可达;②没必要执行finalize方法。
java gc中为什么复制算法比标记整理算法快? - 简书
十、分代收集算法
不同生命周期的对象可以采取不同额收集方式,以便提高回收效率
几乎所有的GC都采用分代收集算法执行垃圾回收的
HotSpot中
- 年轻代:生命周期短,存活率低,回收频繁
- 老年代:区域较大,生命周期长,存活率高,回收不及年轻代频繁
十一、增量收集算法、分区算法
(一)增量收集算法思想
每次垃圾收集线程只收集一小片区域的内存空间,接着切换到应用程序线程,依次反复,直到垃圾收集完成
通过对线程间冲突的妥善管理,允许垃圾收集线程以分阶段的方式完成标记、清理或复制工作
缺点:线程和上下文切换导致系统吞吐量的下降
(二)分区算法
为了控制GC产生的停顿时间,将一块大的内存区域分割成多个小块,根据目标的停顿时间,每次合理的回收若干个小区间,而不是整个堆空间,从而减少一次GC所产生的时间
分代算法是将对象按照生命周期长短划分为两个部分,分区算法是将整个堆划分为连续的不同的小区间
每一个小区间都独立使用,独立回收,这种算法的好处是可以控制一次回收多少个小区间
相关文章:
JVM垃圾回收相关算法
目录 一、前言 二、标记阶段:引用计数算法 三、标记阶段:可达性分析算法 (一)基本思路 (二)GC Roots对象 四、对象的finalization机制 五、MAT与JProfiler的GC Roots溯源 六、清除阶段:…...
crontab 无法激活、启动 pyenv failed to activate virtualenv
root crontab 无法激活、启动 pyenv crontab代码 30 1 * * * sh /data/work/roop/sh/startSwapFaceDev.sh > /dev/null 2>&1 sh核心代码 echo "${YELLOW}pyenv activate ${venv} ${NOCOLOR}" eval "$(pyenv init -)" eval "$(pyenv v…...
系列八、key是弱引用,gc垃圾回收时会影响ThreadLocal正常工作吗
一、key是弱引用,gc垃圾回收时会影响ThreadLocal正常工作吗 到这里,有些小伙伴可能有疑问,ThreadLocalMap的key既然是 弱引用,那么GC时会不会贸然地把key回收掉,进而影响ThreadLocal的正常使用呢?答案是不会…...
pytorch中.to(device) 和.cuda()的区别
在PyTorch中,使用GPU加速可以显著提高模型的训练速度。在将数据传递给GPU之前,需要将其转换为GPU可用的格式。 函数原型如下: def cuda(self: T, device: Optional[Union[int, device]] None) -> T:return self._apply(lambda t: t.cuda…...
Mysql 递归查询子类Id的所有父类Id
文章目录 问题描述先看结果表结构展示实现递归查询集合查询结果修复数据 问题描述 最近开发过程中遇到一个问题,每次添加代理关系都要去递归查询一下它在不在这个代理关系树上.很麻烦也很浪费资源.想着把代理关系的父类全部存起来 先看结果 表结构展示 表名(t_agent_user_rela…...
设计模式 之单例模式
单例模式是一种创建型设计模式,它确保一个类只有一个实例,并提供全局访问点,使得该实例可以在程序的任何地方被访问。单例模式经常用于管理共享资源或限制对象创建数量的情况下。 实现一个单例模式需要注意以下几个关键点: 构造…...
ros2不同机器通讯时IP设置
看到这就是不同机器的IP地址,为了避免在路由器为不同的机器使用DHCP分配到上面的地址,可以设置DHCP分配的范围:(我的路由器是如下设置的,一般路由器型号都不一样,自己找一下) 防火墙设置-----&…...
Nginx模块开发之http过滤器filter
文章目录 什么是过滤模块Nginx相关数据结构介绍ngx_module_t的数据结构ngx_http_module_t数据结构ngx_command_s数据结构 相关宏定义filter(过滤器)实现Nginx模块开发流程Nginx 模块执行具体实现流程create_loc_confmerge_loc_confpostconfiguration修改…...
26 - 原型模式与享元模式:提升系统性能的利器
原型模式和享元模式,前者是在创建多个实例时,对创建过程的性能进行调优;后者是用减少创建实例的方式,来调优系统性能。这么看,你会不会觉得两个模式有点相互矛盾呢? 其实不然,它们的使用是分场…...
【Web安全】sqlmap的使用笔记及示例
【Web安全】sqlmap的使用笔记 文章目录 【Web安全】sqlmap的使用笔记1. 目标2. 脱库2.1. 脱库(补充) 3. 其他3.1. 其他(补充) 4. 绕过脚本tamper讲解 1. 目标 操作作用必要示例-u指定URL,检测注入点sqlmap -u http://…...
机器学习第12天:聚类
文章目录 机器学习专栏 无监督学习介绍 聚类 K-Means 使用方法 实例演示 代码解析 绘制决策边界 本章总结 机器学习专栏 机器学习_Nowl的博客-CSDN博客 无监督学习介绍 某位著名计算机科学家有句话:“如果智能是蛋糕,无监督学习将是蛋糕本体&a…...
若依框架导出下载pdf/excel以及导入打印等
一、打印文件 // 报表打印 handlePdf(row) {wayAPI(row.billcode).then((res) > {var binaryData [];binaryData.push(res);let url window.URL.createObjectURL(new Blob(binaryData, {type: "application/pdf"})); window.open("/static/pdf/web/v…...
汇编-PROC定义子过程(函数)
过程定义 过程用PROC和ENDP伪指令来声明, 并且必须为其分配一个名字(有效的标识符) 。目前为止, 我们所有编写的程序都包含了一个main过程, 例如: 当要创建的过程不是程序的启动过程时, 就用RET指令来结束它。RET强制…...
服务器主机安全的重要性及防护策略
在数字化时代,服务器主机安全是任何组织都必须高度重视的问题。无论是大型企业还是小型企业,无论是政府机构还是个人用户,都需要确保其服务器主机的安全,以防止数据泄露、网络攻击和系统瘫痪等严重后果。 一、服务器主机安全的重…...
PDF转成图片
使用开源库Apache PDFBox将PDF转换为图片 依赖 <dependency><groupId>org.apache.pdfbox</groupId><artifactId>fontbox</artifactId><version>2.0.4</version> </dependency> <dependency><groupId>org.apache…...
Qt无边框设计
//指定窗口为无边框 this->setWindowFlags(Qt::FramelessWindowHint | Qt::WindowMinMaxButtonsHint);重写鼠标事件: void mousePressEvent(QMouseEvent* event) override; void mouseMoveEvent(QMouseEvent* event) override;定义位置: QPoint dif…...
规则引擎Drools使用,0基础入门规则引擎Drools(二)高级语法
文章目录 系列文章索引五、规则属性1、enabled属性2、dialect属性3、salience属性4、no-loop属性5、activation-group属性6、agenda-group属性7、auto-focus属性8、timer属性9、date-effective属性10、date-expires属性 六、Drools高级语法1、global全局变量2、query查询3、fun…...
C语言二十三弹---求第N项斐波那契数列的值
C语言求第N项斐波那契数列的值 定义:斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89…自然中的斐波那契数列࿰…...
Pickcode:教孩子们编码的新视觉语言
Pickcode 通过视觉课程、聊天机器人、游戏和绘图来教授编程。 Pickcode 是一种新的语言和编辑器,可以直观地指导用户编写代码来制作聊天机器人、动画图画和游戏。Pickcode 旨在让用户在学习更高级的语言之前能够充满信心地开始学习编码。 Pickcode 可视化编程语言…...
乐划锁屏插画大赏热度持续,进一步促进价值内容的创造与传播
锁屏,原本只是为了防止手机在口袋里“误触”而打造的功能,现如今逐渐成为文化传播领域的热门入口。乐划锁屏不断丰富锁屏内容和场景玩法,通过打造“乐划锁屏插画大赏”系列活动为广大内容创作者提供了更多展示自我的机会,丰富平台内容。 从2020年到2023年,乐划锁屏插画大赏已连…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
