当前位置: 首页 > news >正文

opencv-简单图像处理

图像像素存储形式
 对于只有黑白颜色的灰度图,为单通道,一个像素块对应矩阵中一个数字,数值为0到255, 其中0表示最暗(黑色) ,255表示最亮(白色)
在这里插入图片描述

对于采用RGB模式的彩色图片,为三通道图,Red、Green、Blue三原色,按不同比例相加,一个像素块对应矩阵中的一个向量, 如[24,180, 50],分别表示三种颜色的比列, 即对应深度上的数字,如下图所示:
在这里插入图片描述
需要注意的是,由于历史遗留问题,opencv采用BGR模式,而不是RGB

图像读取和写入cv.imread()

imread(img_path,flag) 读取图片,返回图片对象img_path: 图片的路径,即使路径错误也不会报错,但打印返回的图片对象为Noneflag:cv2.IMREAD_COLOR,读取彩色图片,图片透明性会被忽略,为默认参数,也可以传入1cv2.IMREAD_GRAYSCALE,按灰度模式读取图像,也可以传入0cv2.IMREAD_UNCHANGED,读取图像,包括其alpha通道,也可以传入-1

显示图像cv2.imshow()

imshow(window_name,img):显示图片,窗口自适应图片大小window_name: 指定窗口的名字img:显示的图片对象可以指定多个窗口名称,显示多个图片waitKey(millseconds)  键盘绑定事件,阻塞监听键盘按键,返回一个数字(不同按键对应的数字不同)millseconds: 传入时间毫秒数,在该时间内等待键盘事件;传入0时,会一直等待键盘事件destroyAllWindows(window_name) window_name: 需要关闭的窗口名字,不传入时关闭所有窗口

保存图片cv2.imwrite()

imwrite(img_path_name,img)img_path_name:保存的文件名img:文件对象

ROI截取(Range of Interest)

 #ROI,Range of instrest
roi = img[100:200,300:400]  #截取100行到200行,列为300到400列的整块区域
img[50:150,200:300] = roi   #将截取的roi移动到该区域 (50到100行,200到300列)
b = img[:,:,0]  #截取整个蓝色通道b,g,r = cv2.split(img) #截取三个通道,比较耗时
img = cv2.merge((b,g,r))

添加边界(padding)

cv2.copyMakeBorder()参数:img:图像对象top,bottom,left,right: 上下左右边界宽度,单位为像素值borderType:cv2.BORDER_CONSTANT, 带颜色的边界,需要传入另外一个颜色值cv2.BORDER_REFLECT, 边缘元素的镜像反射做为边界cv2.BORDER_REFLECT_101/cv2.BORDER_DEFAULTcv2.BORDER_REPLICATE, 边缘元素的复制做为边界CV2.BORDER_WRAPvalue: borderType为cv2.BORDER_CONSTANT时,传入的边界颜色值,如[0,255,0]

像素算术运算cv2.add() 相加的两个图片,应该有相同的大小和通道

cv2.add()参数:img1:图片对象1img2:图片对象2mask:None (掩膜,一般用灰度图做掩膜,img1和img2相加后,和掩膜与运算,从而达到掩盖部分区域的目的)dtype:-1注意:图像相加时应该用cv2.add(img1,img2)代替img1+img2    >>> x = np.uint8([250])>>> y = np.uint8([10])>>> print cv2.add(x,y) # 250+10 = 260 => 255  #相加,opencv超过255的截取为255[[255]]>>> print x+y          # 250+10 = 260 % 256 = 4  #相加,np超过255的会取模运算 (uint8只能表示0-255,所以取模)[4]

图像阈值化 cv2.threshold()  cv2.adaptiveThreshold()

cv2.threshold(): 
参数:img:图像对象,必须是灰度图thresh:阈值maxval:最大值type:cv2.THRESH_BINARY:     小于阈值的像素置为0,大于阈值的置为maxvalcv2.THRESH_BINARY_INV: 小于阈值的像素置为maxval,大于阈值的置为0cv2.THRESH_TRUNC:      小于阈值的像素不变,大于阈值的置为threshcv2.THRESH_TOZERO       小于阈值的像素置0,大于阈值的不变cv2.THRESH_TOZERO_INV   小于阈值的不变,大于阈值的像素置0
返回两个值ret:阈值img:阈值化处理后的图像cv2.adaptiveThreshold() 自适应阈值处理,图像不同部位采用不同的阈值进行处理
参数:img: 图像对象,8-bit单通道图maxValue:最大值adaptiveMethod: 自适应方法cv2.ADAPTIVE_THRESH_MEAN_C     :阈值为周围像素的平均值cv2.ADAPTIVE_THRESH_GAUSSIAN_C : 阈值为周围像素的高斯均值(按权重)threshType:cv2.THRESH_BINARY:     小于阈值的像素置为0,大于阈值的置为maxValuelcv2.THRESH_BINARY_INV:  小于阈值的像素置为maxValue,大于阈值的置为0blocksize: 计算阈值时,自适应的窗口大小,必须为奇数 (如3:表示附近3个像素范围内的像素点,进行计算阈值)C: 常数值,通过自适应方法计算的值,减去该常数值
(mean value of the blocksize*blocksize neighborhood of (x, y) minus C)

图像形状变换 cv2.resize() 图像缩放

cv2.resize() 放大和缩小图像参数:src: 输入图像对象dsize:输出矩阵/图像的大小,为0时计算方式如下:dsize = Size(round(fx*src.cols),round(fy*src.rows))fx: 水平轴的缩放因子,为0时计算方式:  (double)dsize.width/src.colsfy: 垂直轴的缩放因子,为0时计算方式:  (double)dsize.heigh/src.rowsinterpolation:插值算法cv2.INTER_NEAREST : 最近邻插值法cv2.INTER_LINEAR   默认值,双线性插值法cv2.INTER_AREA        基于局部像素的重采样(resampling using pixel area relation)。对于图像抽取(image decimation)来说,这可能是一个更好的方法。但如果是放大图像时,它和最近邻法的效果类似。cv2.INTER_CUBIC        基于4x4像素邻域的3次插值法cv2.INTER_LANCZOS4     基于8x8像素邻域的Lanczos插值cv2.INTER_AREA 适合于图像缩小, cv2.INTER_CUBIC (slow) & cv2.INTER_LINEAR 适合于图像放大

相关文章:

opencv-简单图像处理

图像像素存储形式  对于只有黑白颜色的灰度图,为单通道,一个像素块对应矩阵中一个数字,数值为0到255, 其中0表示最暗(黑色) ,255表示最亮(白色) 对于采用RGB模式的彩色图片&#…...

Linux(Kali\Ubuntu\CentOS\arm-Linux)安装Powershell

文章目录 Linux(Kali\Ubuntu\CentOS\arm-Linux)安装Powershell启动PowershellKaliUbuntuCentOSarm-Linux离线安装参考链接 Linux(Kali\Ubuntu\CentOS\arm-Linux)安装Powershell 启动Powershell pwshKali apt update && apt -y install powershellUbuntu # 更新包列…...

ubuntu20.04安装多版本cuda,切换版本

1. 安装cuda toolkit: 下载网站 https://developer.nvidia.com/cuda-11.3.0-download-archive 选择版本,这里选择11.3 wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run给cuda权限: chmod x…...

网络渗透测试(wireshark 抓取QQ图片)

1.打开wireshark 这里我用的wifi连接 所以点开wifi就好 打开wifi之后就开始在本机上进行抓包了 我们先给我们的QQ发送一张图片,用自己的手机发送给电脑 然后点击左上角的正方形,停止捕获抓包 QQ的关键词是oicq,所以我们直接找 打开oicq …...

gRPC之gRPC负载均衡(客户端负载均衡)(etcd)

1、gRPC负载均衡(客户端负载均衡)(etcd) 本篇将基于etcd的服务发现前提下,介绍如何实现gRPC客户端负载均衡。 1.1 gRPC负载均衡 gRPC官方文档提供了关于gRPC负载均衡方案Load Balancing in gRPC https://github.com/grpc/grpc/blob/master/doc/load-balancing.m…...

语音识别技术paddlespeech的安装和使用

PaddleSpeech 介绍 PaddleSpeech是百度飞桨(PaddlePaddle)开源深度学习平台的其中一个项目,它基于飞桨的语音方向模型库,用于语音和音频中的各种关键任务的开发,包含大量基于深度学习前沿和有影响力的模型。PaddleSpe…...

【机器学习】034_多层感知机Part.2_从零实现多层感知机

一、解决XOR问题 1. 回顾XOR问题: 如图,如何对XOR面进行分割以划分四个输入 对应的输出 呢? 思路:采用两个分类器分类,每次分出两个输入 ,再借助这两个分类从而分出 。 即采用同或运算,当两…...

2023年中职“网络安全“—Web 渗透测试①

2023年中职"网络安全"—Web 渗透测试① Web 渗透测试任务环境说明:1.访问地址http://靶机IP/task1,分析页面内容,获取flag值,Flag格式为flag{xxx};2.访问地址http://靶机IP/task2,访问登录页面。…...

Android——资源IDnonFinalResIds和“Attribute value must be constant”错误

一、异常描述 通过资源ID引用资源提示错误 Attribute value must be constant 二、解决方案 在根目录下的文件 gradle.properties 中添加如下配置,然后Sync Project android.nonFinalResIdsfalse 三、问题原因 android.nonFinalResIds 是Android开发中一个用于解…...

批量创建表空间数据文件(DM8:达梦数据库)

DM8:达梦数据库 - - 批量创建表空间数据文件 环境介绍1 批量创建表空间SQL2 达梦数据库学习使用列表 环境介绍 在某些场景(分区表子表)需要批量创建表空间,给不同的表使用,以下代码是批量创建表空间的SQL语句; 1 批量创建表空间SQL --创建 24个数据表空间,每个表空间有3个数…...

简单聊聊加密和加签的关系与区别

大家好,我是G探险者。 平时我们在项目上一定都听过加密和加签,加密可能都好理解,知道它是保障的数据的机密性,那加签是为了保障啥勒?它和加密有啥区别? 带着这个疑问,我们就来聊聊二者的区别。…...

视频转码方法:多种格式视频批量转FLV视频的技巧

随着互联网的发展,视频已成为日常生活中不可或缺的一部分。然而,不同的视频格式可能适用于不同的设备和平台,因此需要进行转码。在转码之前,要了解各种视频格式的特点和适用场景。常见的视频格式包括MP4、AVI、MKV、FLV等。其中&a…...

【Java 进阶篇】Redis 数据结构:轻松驾驭多样性

引言 Redis是一款强大的键值对存储系统,其数据结构的多样性是其引以为傲的特点之一。在这篇博客中,我们将深入探讨Redis的主要数据结构,包括字符串、哈希表、列表、集合和有序集合,并通过实例代码演示它们的用法。 1. 字符串&am…...

东用科技智能公交识别系统无线传输方案

在科技不断进步和人工智能快速发展的当下,人脸识别技术已逐渐应用于各个领域。其中,公共交通领域便是重要的应用场景之一。人脸识别技术的引入可以提高交通的安全性、效率及便利性。 为了实现公交公司对乘客的身份识别和安全管理的需求,提高运…...

Django批量插入数据及分页器

文章目录 一、批量插入数据二、分页1.分页器的思路2.用一个案例试试3.自定义分页器 一、批量插入数据 当我们需要大批量创建数据的时候,如果一条一条的去创建或许需要猴年马月 我们可以先试一试for循环试试 我们首先建立一个模型类来创建一个表 models.py&#xff…...

PHP 语法||PHP 变量

PHP 脚本在服务器上执行&#xff0c;然后将纯 HTML 结果发送回浏览器。 基本的 PHP 语法 PHP 脚本可以放在文档中的任何位置。 PHP 脚本以 <?php 开始&#xff0c;以 ?> 结束&#xff1a; <?php // PHP 代码 ?> 值得一提的是&#xff0c;通过设定php.ini的相…...

【python基础(四)】if语句详解

文章目录 一. 一个简单示例二. 条件测试1. 检查多个条件1.1. 使用and关联多个条件1.2. 使用or检查多个条件1.3. in的判断 2. 布尔表达式 三. if语句1. 简单的if语句2. if-else语句3. if-elif-else结构4. 使用多个elif代码块5. 省略else代码块 四. 使用if语句处理列表1. 检查特殊…...

Spring Boot中常用的参数传递注解

RequestParam&#xff1a;用于将请求参数绑定到控制器处理方法的参数上&#xff0c;适用于GET请求。PathVariable&#xff1a;用于获取请求URL中的动态参数&#xff0c;适用于RESTful风格的URL。RequestBody&#xff1a;用于将请求体中的JSON字符串绑定到控制器处理方法的参数上…...

Quartz .Net 的简单使用

参考了&#xff1a;c# .net framework 4.5.2 , Quartz.NET 3.0.7 - runliuv - 博客园 (cnblogs.com) https://www.cnblogs.com/personblog/p/11277527.html&#xff0c; Quartz.NET 作业调度&#xff08;一&#xff09;&#xff1a;Test - 简书 自己要轮询的任务&#xff1a…...

面试Java笔试题精选解答

文章目录 热身级别数组中重复的数字思路&#xff1a;使用map或HashSet来遍历一遍就可以找出重复的字符样例解答 用两个栈实现队列思路&#xff1a;Stack1正向进入&#xff0c;队头在栈底&#xff0c;用于进队列操作&#xff1b;Stack2是Stack1倒栈形成&#xff0c;队头在栈顶&a…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...