当前位置: 首页 > news >正文

搭配:基于OpenCV的边缘检测实战

引言

计算机中的目标检测与人类识别物体的方式相似。作为人类,我们可以分辨出狗的形象,因为狗的特征是独特的。尾巴、形状、鼻子、舌头等特征综合在一起,帮助我们把狗和牛区分开来。

同样,计算机能够通过检测与估计物体的结构和性质相关的特征来识别物体。其中一个特征就是边缘。

在数学上,边是两个角或面之间的一条线。边缘检测的关键思想是像素亮度差异极大的区域表示边缘。因此,边缘检测是对图像亮度不连续性的一种度量。

Sobel边缘检测

Sobel边缘检测器也称为Sobel–Feldman运算符或Sobel过滤器,它的工作原理是通过计算图像中每个像素的图像强度梯度。

它找到了从亮到暗的最大亮度增加方向以及该方向的变化率。使用该过滤器时,可以分别在X和Y方向上或一起处理图像。

1a1d7bff7d9c77a1ad49c8732e167cd0.png

Sobel检测器使用3X3核函数,这些核函数与原始图像进行卷积,计算出导数的近似值。

为了检测图像中的水平边缘(x方向) ,我们将使用x方向内核来扫描图像,用于检测垂直边缘。

import cv2
import numpy as np
import matplotlib.pyplot as plt
# Load the image
image_original = cv2.imread('building.jpg', cv2.IMREAD_COLOR)
# Convert image to gray scale
image_gray = cv2.cvtColor(image_original, cv2.COLOR_BGR2GRAY)
# 3x3 Y-direction  kernel
sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
# 3 X 3 X-direction kernel
sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
# Filter the image using filter2D, which has inputs: (grayscale image, bit-depth, kernel)
filtered_image_y = cv2.filter2D(image_gray, -1, sobel_y)
filtered_image_x = cv2.filter2D(image_gray, -1, sobel_x)

现在,让我们绘制上面代码的输出。

(fig, (ax1, ax2, ax3)) = plt.subplots(1, 3, figsize=(25, 25))
ax1.title.set_text('Original Image')
ax1.imshow(image_original)
ax2.title.set_text('sobel_x')
ax2.imshow(filtered_image_y)
ax3.title.set_text('sobel_y filter')
ax3.imshow(filtered_image_x)
plt.show()

33c1fad402ed9d42ea870f85573e4dbd.png

不需要记住所有的过滤器内核。可以直接在 OpenCV 库中使用您选择的相应过滤器。

在OpenCV中,可以像如下所示应用Sobel边缘检测。

sobel_x_filtered_image = cv2.Sobel(image_gray, cv2.CV_64F, 1, 0, ksize=3)
sobel_x_filtered_image = cv2.Sobel(image_gray, cv2.CV_64F, 0, 1, ksize=3)
sobel_y_filtered_image = cv2.convertScaleAbs(sobel_x_filtered_image)
sobel_y_filtered_image = cv2.convertScaleAbs(sobel_y_filtered_image)

Laplacian边缘检测

拉普拉斯边缘检测器比较图像的二阶导数。它测量的是一阶导数在一次通过中的变化率。拉普拉斯边缘检测使用一个核心,包含负值的交叉模式,如下所示。

535b00be8f065ebe6b677b9c951666ea.png

拉普拉斯边缘检测器的一个缺点是对噪声敏感。也就是说,它可能最终检测噪声作为边缘。在应用拉普拉斯过滤器之前对图像进行平滑处理是一种常见的做法。

我们可以实现一个拉普拉斯边缘检测器如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
image_original = cv2.imread('building.jpg', cv2.IMREAD_COLOR)
# remove noise
image_gray = cv2.cvtColor(image_original, cv2.COLOR_BGR2GRAY)
# Reduce noise in image
img = cv2.GaussianBlur(image_gray,(3,3),0)
# Filter the image using filter2D, which has inputs: (grayscale image, bit-depth, kernel)
filtered_image = cv2.Laplacian(img, ksize=3, ddepth=cv2.CV_16S)
# converting back to uint8
filtered_image = cv2.convertScaleAbs(filtered_image)
# Plot outputs
(fig, (ax1, ax2)) = plt.subplots(1, 2, figsize=(15, 15))
ax1.title.set_text('Original Image')
ax1.imshow(image_original)
ax2.title.set_text('Laplacian Filtered Image')
ax2.imshow(filtered_image, cmap='gray')

05f356387c2adf660bbb52af98d72f03.png

Canny边缘检测

Canny边缘检测可以分为如下四个步骤:

· 消除噪音

· 梯度计算

· 利用非最大值抑制提取图像边缘

· 滞后阈值法

因为Canny边缘检测对噪声很敏感,所以第一步就是去噪,通过首先应用高斯滤波器对图像进行平滑处理。

Canny边缘检测的第二步是梯度计算。它通过沿着梯度方向计算图像中灰度(梯度)的变化率来实现。

我们知道图像的亮度在边缘处最高,但实际上,亮度并不是在一个像素处达到峰值; 相反,邻近的像素具有很高的亮度。在每个像素位置,canny 边缘检测比较像素,并在沿梯度方向选择3X3邻域的局部最大值。这个过程被称为非最大值抑制。

这一步结束之后,会形成一些破碎的边缘。最后一步是使用一种叫做滞后阈值的方法来修复这些断裂的边缘。

对于滞后阈值,有两个阈值: 高阈值和低阈值。

任何梯度值高于高阈值的像素自动保持为边缘。对于梯度位于高阈值和低阈值之间的像素,有两种处理方式。检查像素是否可能连接到边缘; 如果连接,则保留像素,否则丢弃。低于低阈值的像素被自动丢弃。

现在,让我们通过OpenCV实现一个Canny边缘检测。

import cv2
import numpy as np
import matplotlib.pyplot as plt
image_original = cv2.imread('building.jpg', cv2.IMREAD_COLOR)
# remove noise
image_gray = cv2.cvtColor(image_original, cv2.COLOR_BGR2GRAY)
filtered_image = cv2.Canny(image_gray, threshold1=20, threshold2=200)
# Plot outputs
(fig, (ax1, ax2)) = plt.subplots(1, 2, figsize=(15, 15))
ax1.title.set_text('Original Image')
ax1.imshow(image_original)
ax2.title.set_text('Laplacian Filtered Image')
ax2.imshow(filtered_image, cmap='gray')

c161cf4c93f1fd5bc4ec9af3d08e64ec.png

·  END  ·

HAPPY LIFE

8cce092d8ed4e47d3e9c4f126c0aded0.png

觉得有趣就点亮在看吧

dbb4a6abd03b5fccdad69b3a883b5c5a.gif

相关文章:

搭配:基于OpenCV的边缘检测实战

引言 计算机中的目标检测与人类识别物体的方式相似。作为人类,我们可以分辨出狗的形象,因为狗的特征是独特的。尾巴、形状、鼻子、舌头等特征综合在一起,帮助我们把狗和牛区分开来。 同样,计算机能够通过检测与估计物体的结构和性…...

AI大发展:人机交互、智能生活全解析

目录 ​编辑 人工智能对我们的生活影响有多大 人工智能的应用领域 一、机器学习与深度学习 二、计算机视觉 三、自然语言处理 四、机器人技术 五、智能推荐系统 六、智能城市和智能家居 ​编辑 自己对人工智能的应用 自己的人工智能看法:以ChatGPT为例 …...

Django DRF序列化器serializer

以下案例由浅到深&#xff0c;逐步深入&#xff0c;通过实例介绍了序列化器的使用方法&#xff0c;和遇到的常见问题的解决方法。 一、序列化器serializers.Serializer 1、urls.py urlpatterns [path("api/<str:version>/depart/",views.DepartView.as_vie…...

【开源】基于JAVA的衣物搭配系统

项目编号&#xff1a; S 016 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S016&#xff0c;文末获取源码。} 项目编号&#xff1a;S016&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 衣物档案模块2.2 衣物搭配模块2.3 衣…...

Spark---基于Standalone模式提交任务

Standalone模式两种提交任务方式 一、Standalone-client提交任务方式 1、提交命令 ./spark-submit --master spark://mynode1:7077 --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.3.1.jar 100 或者 ./spark-submit --master spark…...

webrtc的RTCPeerConnection使用

背景: 平时我们很少会需要使用到点对点单独的通讯,即p2p,一般都是点对服务端通讯,但p2p也有自己的好处,即通讯不经过服务端,从服务端角度这个省了带宽和压力,从客户端角度,通讯是安全,且快速的,当然有些情况下可能速度并不一定快。那么如何实现p2p呢? 解决办法: …...

【视觉SLAM十四讲学习笔记】第三讲——Eigen库

专栏系列文章如下&#xff1a; 【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍 【视觉SLAM十四讲学习笔记】第二讲——初识SLAM 【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵 本章将介绍视觉SLAM的基本问题之一&#xff1a;如何描述刚体在三维空间中的运动&#xff1f; Eigen…...

Ubuntu开机显示recovering journal,进入emergency mode

在一次正常的shutdown -r now之后&#xff0c;服务器启动不起来了&#xff0c;登录界面显示recovering journal&#xff0c;主要报错信息如下所示&#xff1a; /dev/sda2:recovering journal /dev/sda2:Clearn... You are in emergency mode. After logging in, type journalc…...

C++_String增删查改模拟实现

C_String增删查改模拟实现 前言一、string默认构造、析构函数、拷贝构造、赋值重载1.1 默认构造1.2 析构函数1.3 拷贝构造1.4 赋值重载 二、迭代器和范围for三、元素相关&#xff1a;operator[ ]四、容量相关&#xff1a;size、resize、capacity、reserve4.1 size、capacity4.2…...

LeeCode前端算法基础100题(2)- 最多水的容器

一、问题详情&#xff1a; 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明&#xff1a;…...

排序算法--归并排序

实现逻辑 ① 将序列每相邻两个数字进行归并操作&#xff0c;形成floor(n/2)个序列&#xff0c;排序后每个序列包含两个元素 ② 将上述序列再次归并&#xff0c;形成floor(n/4)个序列&#xff0c;每个序列包含四个元素 ③ 重复步骤②&#xff0c;直到所有元素排序完毕 void pri…...

【LeetCode:1410. HTML 实体解析器 | 模拟+哈希表+字符串+库函数】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…...

基于SSM的公司仓库管理系统(有报告)。Javaee项目

演示视频&#xff1a; 基于SSM的公司仓库管理系统&#xff08;有报告&#xff09;。Javaee项目 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring SpringMvc …...

spark数据倾斜的解决思路

数据倾斜是&#xff1a;多个分区中&#xff0c;某个分区的数据比其他分区的数据多的多 数据倾斜导致的问题&#xff1a; 导致某个spark任务耗时较长&#xff0c;导致整个任务耗时增加&#xff0c;甚至出现OOM运行速度慢&#xff1a;主要发生在shuffle阶段&#xff0c;同样的k…...

Python武器库开发-前端篇之html概述(二十八)

前端篇之html概述(二十八) html概述 HTML5是构建Web内容的一种语言描述方式。HTML5是互联网的下一代标准&#xff0c;是构建以及呈现互联网内容的一种语言方式&#xff0e;被认为是互联网的核心技术之一。HTML产生于1990年&#xff0c;1997年HTML4成为互联网标准&#xff0c;…...

安防视频EasyCVR平台太阳能供电+4G摄像头视频监控方案的建设

在工地、光伏、风电站、水库河道等场景中&#xff0c;以及一些偏远地区的项目现场&#xff0c;会存在无网无电情况&#xff0c;大大制约了视频监控系统建设的效率及可行性。在这种场景中&#xff0c;我们也可以通过太阳能供电4G监控摄像机的方案&#xff0c;满足偏远地区无网无…...

12.位运算的性质(异或的性质)

文章目录 异或的性质求异或和问题[421. 数组中两个数的最大异或值](https://leetcode.cn/problems/maximum-xor-of-two-numbers-in-an-array/)[2935. 找出强数对的最大异或值 II](https://leetcode.cn/problems/maximum-strong-pair-xor-ii/) 异或前缀和问题&#xff08;最..回…...

国标直流充电枪9孔分别啥意思?

DC&#xff1a;直流电源正 DC-&#xff1a;直流电源负 PE&#xff1a;接地&#xff08;搭铁&#xff09;S&#xff1a;通讯CAN-H S-&#xff1a;通讯CAN-L CC1&#xff1a;充电连接确认 CC2&#xff1a;充电连接确认 A&#xff1a;12V A-&#xff1a;12V- 以上就是国标直流充电…...

关于 Google AMP 和 SEO

Google 于 2015 年首次推出 AMP&#xff0c;即加速移动页面。借助开源 AMP 框架&#xff0c;网页设计师可以制作快速加载的移动网页。该框架的创建是为了应对使用移动设备访问互联网的个人数量的增加。从那时起&#xff0c;谷歌一直在推动使用 AMP 来增强移动设备上的 SEO 和用…...

【SpringMVC】 对请求的不同响应

前言 本文学习如何运用不同的注解来返回不同的响应. 1.返回静态页面Controller 返回index.html页面 Controller 和 RestController的区别 controller 只有加上这个注解,Spring才会帮我们管理这个代码.后续我们访问时才能访问到. RestController 等同于 Controller ResponseBo…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...