当前位置: 首页 > news >正文

搭配:基于OpenCV的边缘检测实战

引言

计算机中的目标检测与人类识别物体的方式相似。作为人类,我们可以分辨出狗的形象,因为狗的特征是独特的。尾巴、形状、鼻子、舌头等特征综合在一起,帮助我们把狗和牛区分开来。

同样,计算机能够通过检测与估计物体的结构和性质相关的特征来识别物体。其中一个特征就是边缘。

在数学上,边是两个角或面之间的一条线。边缘检测的关键思想是像素亮度差异极大的区域表示边缘。因此,边缘检测是对图像亮度不连续性的一种度量。

Sobel边缘检测

Sobel边缘检测器也称为Sobel–Feldman运算符或Sobel过滤器,它的工作原理是通过计算图像中每个像素的图像强度梯度。

它找到了从亮到暗的最大亮度增加方向以及该方向的变化率。使用该过滤器时,可以分别在X和Y方向上或一起处理图像。

1a1d7bff7d9c77a1ad49c8732e167cd0.png

Sobel检测器使用3X3核函数,这些核函数与原始图像进行卷积,计算出导数的近似值。

为了检测图像中的水平边缘(x方向) ,我们将使用x方向内核来扫描图像,用于检测垂直边缘。

import cv2
import numpy as np
import matplotlib.pyplot as plt
# Load the image
image_original = cv2.imread('building.jpg', cv2.IMREAD_COLOR)
# Convert image to gray scale
image_gray = cv2.cvtColor(image_original, cv2.COLOR_BGR2GRAY)
# 3x3 Y-direction  kernel
sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
# 3 X 3 X-direction kernel
sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
# Filter the image using filter2D, which has inputs: (grayscale image, bit-depth, kernel)
filtered_image_y = cv2.filter2D(image_gray, -1, sobel_y)
filtered_image_x = cv2.filter2D(image_gray, -1, sobel_x)

现在,让我们绘制上面代码的输出。

(fig, (ax1, ax2, ax3)) = plt.subplots(1, 3, figsize=(25, 25))
ax1.title.set_text('Original Image')
ax1.imshow(image_original)
ax2.title.set_text('sobel_x')
ax2.imshow(filtered_image_y)
ax3.title.set_text('sobel_y filter')
ax3.imshow(filtered_image_x)
plt.show()

33c1fad402ed9d42ea870f85573e4dbd.png

不需要记住所有的过滤器内核。可以直接在 OpenCV 库中使用您选择的相应过滤器。

在OpenCV中,可以像如下所示应用Sobel边缘检测。

sobel_x_filtered_image = cv2.Sobel(image_gray, cv2.CV_64F, 1, 0, ksize=3)
sobel_x_filtered_image = cv2.Sobel(image_gray, cv2.CV_64F, 0, 1, ksize=3)
sobel_y_filtered_image = cv2.convertScaleAbs(sobel_x_filtered_image)
sobel_y_filtered_image = cv2.convertScaleAbs(sobel_y_filtered_image)

Laplacian边缘检测

拉普拉斯边缘检测器比较图像的二阶导数。它测量的是一阶导数在一次通过中的变化率。拉普拉斯边缘检测使用一个核心,包含负值的交叉模式,如下所示。

535b00be8f065ebe6b677b9c951666ea.png

拉普拉斯边缘检测器的一个缺点是对噪声敏感。也就是说,它可能最终检测噪声作为边缘。在应用拉普拉斯过滤器之前对图像进行平滑处理是一种常见的做法。

我们可以实现一个拉普拉斯边缘检测器如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
image_original = cv2.imread('building.jpg', cv2.IMREAD_COLOR)
# remove noise
image_gray = cv2.cvtColor(image_original, cv2.COLOR_BGR2GRAY)
# Reduce noise in image
img = cv2.GaussianBlur(image_gray,(3,3),0)
# Filter the image using filter2D, which has inputs: (grayscale image, bit-depth, kernel)
filtered_image = cv2.Laplacian(img, ksize=3, ddepth=cv2.CV_16S)
# converting back to uint8
filtered_image = cv2.convertScaleAbs(filtered_image)
# Plot outputs
(fig, (ax1, ax2)) = plt.subplots(1, 2, figsize=(15, 15))
ax1.title.set_text('Original Image')
ax1.imshow(image_original)
ax2.title.set_text('Laplacian Filtered Image')
ax2.imshow(filtered_image, cmap='gray')

05f356387c2adf660bbb52af98d72f03.png

Canny边缘检测

Canny边缘检测可以分为如下四个步骤:

· 消除噪音

· 梯度计算

· 利用非最大值抑制提取图像边缘

· 滞后阈值法

因为Canny边缘检测对噪声很敏感,所以第一步就是去噪,通过首先应用高斯滤波器对图像进行平滑处理。

Canny边缘检测的第二步是梯度计算。它通过沿着梯度方向计算图像中灰度(梯度)的变化率来实现。

我们知道图像的亮度在边缘处最高,但实际上,亮度并不是在一个像素处达到峰值; 相反,邻近的像素具有很高的亮度。在每个像素位置,canny 边缘检测比较像素,并在沿梯度方向选择3X3邻域的局部最大值。这个过程被称为非最大值抑制。

这一步结束之后,会形成一些破碎的边缘。最后一步是使用一种叫做滞后阈值的方法来修复这些断裂的边缘。

对于滞后阈值,有两个阈值: 高阈值和低阈值。

任何梯度值高于高阈值的像素自动保持为边缘。对于梯度位于高阈值和低阈值之间的像素,有两种处理方式。检查像素是否可能连接到边缘; 如果连接,则保留像素,否则丢弃。低于低阈值的像素被自动丢弃。

现在,让我们通过OpenCV实现一个Canny边缘检测。

import cv2
import numpy as np
import matplotlib.pyplot as plt
image_original = cv2.imread('building.jpg', cv2.IMREAD_COLOR)
# remove noise
image_gray = cv2.cvtColor(image_original, cv2.COLOR_BGR2GRAY)
filtered_image = cv2.Canny(image_gray, threshold1=20, threshold2=200)
# Plot outputs
(fig, (ax1, ax2)) = plt.subplots(1, 2, figsize=(15, 15))
ax1.title.set_text('Original Image')
ax1.imshow(image_original)
ax2.title.set_text('Laplacian Filtered Image')
ax2.imshow(filtered_image, cmap='gray')

c161cf4c93f1fd5bc4ec9af3d08e64ec.png

·  END  ·

HAPPY LIFE

8cce092d8ed4e47d3e9c4f126c0aded0.png

觉得有趣就点亮在看吧

dbb4a6abd03b5fccdad69b3a883b5c5a.gif

相关文章:

搭配:基于OpenCV的边缘检测实战

引言 计算机中的目标检测与人类识别物体的方式相似。作为人类,我们可以分辨出狗的形象,因为狗的特征是独特的。尾巴、形状、鼻子、舌头等特征综合在一起,帮助我们把狗和牛区分开来。 同样,计算机能够通过检测与估计物体的结构和性…...

AI大发展:人机交互、智能生活全解析

目录 ​编辑 人工智能对我们的生活影响有多大 人工智能的应用领域 一、机器学习与深度学习 二、计算机视觉 三、自然语言处理 四、机器人技术 五、智能推荐系统 六、智能城市和智能家居 ​编辑 自己对人工智能的应用 自己的人工智能看法:以ChatGPT为例 …...

Django DRF序列化器serializer

以下案例由浅到深&#xff0c;逐步深入&#xff0c;通过实例介绍了序列化器的使用方法&#xff0c;和遇到的常见问题的解决方法。 一、序列化器serializers.Serializer 1、urls.py urlpatterns [path("api/<str:version>/depart/",views.DepartView.as_vie…...

【开源】基于JAVA的衣物搭配系统

项目编号&#xff1a; S 016 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S016&#xff0c;文末获取源码。} 项目编号&#xff1a;S016&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 衣物档案模块2.2 衣物搭配模块2.3 衣…...

Spark---基于Standalone模式提交任务

Standalone模式两种提交任务方式 一、Standalone-client提交任务方式 1、提交命令 ./spark-submit --master spark://mynode1:7077 --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.3.1.jar 100 或者 ./spark-submit --master spark…...

webrtc的RTCPeerConnection使用

背景: 平时我们很少会需要使用到点对点单独的通讯,即p2p,一般都是点对服务端通讯,但p2p也有自己的好处,即通讯不经过服务端,从服务端角度这个省了带宽和压力,从客户端角度,通讯是安全,且快速的,当然有些情况下可能速度并不一定快。那么如何实现p2p呢? 解决办法: …...

【视觉SLAM十四讲学习笔记】第三讲——Eigen库

专栏系列文章如下&#xff1a; 【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍 【视觉SLAM十四讲学习笔记】第二讲——初识SLAM 【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵 本章将介绍视觉SLAM的基本问题之一&#xff1a;如何描述刚体在三维空间中的运动&#xff1f; Eigen…...

Ubuntu开机显示recovering journal,进入emergency mode

在一次正常的shutdown -r now之后&#xff0c;服务器启动不起来了&#xff0c;登录界面显示recovering journal&#xff0c;主要报错信息如下所示&#xff1a; /dev/sda2:recovering journal /dev/sda2:Clearn... You are in emergency mode. After logging in, type journalc…...

C++_String增删查改模拟实现

C_String增删查改模拟实现 前言一、string默认构造、析构函数、拷贝构造、赋值重载1.1 默认构造1.2 析构函数1.3 拷贝构造1.4 赋值重载 二、迭代器和范围for三、元素相关&#xff1a;operator[ ]四、容量相关&#xff1a;size、resize、capacity、reserve4.1 size、capacity4.2…...

LeeCode前端算法基础100题(2)- 最多水的容器

一、问题详情&#xff1a; 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明&#xff1a;…...

排序算法--归并排序

实现逻辑 ① 将序列每相邻两个数字进行归并操作&#xff0c;形成floor(n/2)个序列&#xff0c;排序后每个序列包含两个元素 ② 将上述序列再次归并&#xff0c;形成floor(n/4)个序列&#xff0c;每个序列包含四个元素 ③ 重复步骤②&#xff0c;直到所有元素排序完毕 void pri…...

【LeetCode:1410. HTML 实体解析器 | 模拟+哈希表+字符串+库函数】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…...

基于SSM的公司仓库管理系统(有报告)。Javaee项目

演示视频&#xff1a; 基于SSM的公司仓库管理系统&#xff08;有报告&#xff09;。Javaee项目 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring SpringMvc …...

spark数据倾斜的解决思路

数据倾斜是&#xff1a;多个分区中&#xff0c;某个分区的数据比其他分区的数据多的多 数据倾斜导致的问题&#xff1a; 导致某个spark任务耗时较长&#xff0c;导致整个任务耗时增加&#xff0c;甚至出现OOM运行速度慢&#xff1a;主要发生在shuffle阶段&#xff0c;同样的k…...

Python武器库开发-前端篇之html概述(二十八)

前端篇之html概述(二十八) html概述 HTML5是构建Web内容的一种语言描述方式。HTML5是互联网的下一代标准&#xff0c;是构建以及呈现互联网内容的一种语言方式&#xff0e;被认为是互联网的核心技术之一。HTML产生于1990年&#xff0c;1997年HTML4成为互联网标准&#xff0c;…...

安防视频EasyCVR平台太阳能供电+4G摄像头视频监控方案的建设

在工地、光伏、风电站、水库河道等场景中&#xff0c;以及一些偏远地区的项目现场&#xff0c;会存在无网无电情况&#xff0c;大大制约了视频监控系统建设的效率及可行性。在这种场景中&#xff0c;我们也可以通过太阳能供电4G监控摄像机的方案&#xff0c;满足偏远地区无网无…...

12.位运算的性质(异或的性质)

文章目录 异或的性质求异或和问题[421. 数组中两个数的最大异或值](https://leetcode.cn/problems/maximum-xor-of-two-numbers-in-an-array/)[2935. 找出强数对的最大异或值 II](https://leetcode.cn/problems/maximum-strong-pair-xor-ii/) 异或前缀和问题&#xff08;最..回…...

国标直流充电枪9孔分别啥意思?

DC&#xff1a;直流电源正 DC-&#xff1a;直流电源负 PE&#xff1a;接地&#xff08;搭铁&#xff09;S&#xff1a;通讯CAN-H S-&#xff1a;通讯CAN-L CC1&#xff1a;充电连接确认 CC2&#xff1a;充电连接确认 A&#xff1a;12V A-&#xff1a;12V- 以上就是国标直流充电…...

关于 Google AMP 和 SEO

Google 于 2015 年首次推出 AMP&#xff0c;即加速移动页面。借助开源 AMP 框架&#xff0c;网页设计师可以制作快速加载的移动网页。该框架的创建是为了应对使用移动设备访问互联网的个人数量的增加。从那时起&#xff0c;谷歌一直在推动使用 AMP 来增强移动设备上的 SEO 和用…...

【SpringMVC】 对请求的不同响应

前言 本文学习如何运用不同的注解来返回不同的响应. 1.返回静态页面Controller 返回index.html页面 Controller 和 RestController的区别 controller 只有加上这个注解,Spring才会帮我们管理这个代码.后续我们访问时才能访问到. RestController 等同于 Controller ResponseBo…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...