当前位置: 首页 > news >正文

chatGPT2:如何构建一个可以回答有关您网站问题的 AI 嵌入(embeddings)

感觉这个目前没有什么用,因为客户可以直接问通用chatGPT,实时了解你网站内的信息,除非你的网站chatGPT无法访问。
不过自动预订、买票等用嵌入还是挺有用的。

什么是嵌入?

OpenAI的嵌入(embeddings)是一种技术,它能够将文本、代码或者其他类型的数据转换成数值向量。这些数值向量捕捉了原始数据的关键特征和含义,使得计算机和算法能更有效地处理和分析数据。

将数据传递给模型的过程通常涉及以下几个步骤:

  1. 数据准备:首先,您需要准备您想要分析或处理的数据。这可能是文本、图片、音频或其他类型的数据。

  2. 格式转换:将数据转换成模型能够理解的格式。对于文本数据,这通常意味着将其转换为字符串形式。

  3. 使用API:如果您使用OpenAI的API,您需要按照API的要求格式化您的数据,并通过HTTP请求将其发送给API。这通常涉及到编写一些代码,使用像Python这样的编程语言。

  4. 处理响应:模型会处理您的数据,并以某种形式返回结果。这个结果通常也是一个数值向量,或者是其他类型的数据,例如生成的文本、图片等。

  5. 后处理:根据您的需求,您可能需要对模型的输出进行进一步的处理或分析。

对于不同类型的数据和不同的应用场景,这个过程可能会有所不同,但基本的原则是相似的。如果您具体想知道如何使用某个特定的OpenAI模型或API,通常最好的做法是查阅该模型或API的官方文档,那里会有详细的说明和示例代码。

构建一个可以回答有关您网站问题的 AI步骤:

1抓取网站

从根 URL 开始,访问每个页面,查找其他链接,并访问这些页面。
爬网程序遍历所有可访问的链接并将这些页面转换为文本文件(去掉html的tag)。
(内容如果太长,需分解成更小的块)
转为csv结构。

2使用 Embeddings API 将抓取的页面转换为嵌入

第一步是将嵌入转换为 NumPy 数组(基它形式的也可以)

import numpy as np
from openai.embeddings_utils import distances_from_embeddingsdf=pd.read_csv('processed/embeddings.csv', index_col=0)
df['embeddings'] = df['embeddings'].apply(eval).apply(np.array)df.head()

关于NumPy 数组 Certainly! Here’s a simple example using NumPy, a powerful
library for numerical processing in Python. This example will
demonstrate how to create a NumPy array and perform some basic
operations:


# Creating a simple NumPy array array = np.array([1, 2, 3, 4, 5]) print("Original Array:", array)# Performing basic operations
# Adding a constant to each element added_array = array + 10 print("Array after adding 10 to each element:", added_array)# Multiplying each element by 2 multiplied_array = array * 2 print("Array after multiplying each element by 2:", multiplied_array)# Computing the mean of the array mean_value = np.mean(array) print("Mean of the array:", mean_value)# Reshaping the array into a 2x3 matrix
# Note: The total number of elements must remain the same. reshaped_array = np.reshape(array, (2, 2))  # Only possible with an
array of 4 elements print("Reshaped array into a 2x2 matrix:\n",
reshaped_array) ```In this example, we first import the NumPy library. Then, we create a
basic array and perform operations like addition, multiplication, and
calculating the mean. Finally, we reshape the array into a 2x2 matrix.
Keep in mind that the reshape function requires the total number of
elements to remain the same, so in this example, you would need to
modify the original array or the shape to ensure they match.

3创建一个基本的搜索功能,允许用户询问有关嵌入信息的问题

现在数据已经准备好了,根据检索到的文本生成一个自然的答案。

def create_context(question, df, max_len=1800, size="ada"
):"""Create a context for a question by finding the most similar context from the dataframe"""# Get the embeddings for the questionq_embeddings = client.embeddings.create(input=question, engine='text-embedding-ada-002')['data'][0]['embedding']# Get the distances from the embeddingsdf['distances'] = distances_from_embeddings(q_embeddings, df['embeddings'].values, distance_metric='cosine')returns = []cur_len = 0# Sort by distance and add the text to the context until the context is too longfor i, row in df.sort_values('distances', ascending=True).iterrows():# Add the length of the text to the current lengthcur_len += row['n_tokens'] + 4# If the context is too long, breakif cur_len > max_len:break# Else add it to the text that is being returnedreturns.append(row["text"])# Return the contextreturn "\n\n###\n\n".join(returns)

回答提示将尝试从检索到的上下文中提取相关事实,以制定连贯的答案。如果没有相关答案,提示将返回“我不知道”。

def answer_question(df,model="gpt-3.5-turbo",question="Am I allowed to publish model outputs to Twitter, without a human review?",max_len=1800,size="ada",debug=False,max_tokens=150,stop_sequence=None
):"""Answer a question based on the most similar context from the dataframe texts"""context = create_context(question,df,max_len=max_len,size=size,)# If debug, print the raw model responseif debug:print("Context:\n" + context)print("\n\n")try:# Create a chat completion using the question and contextresponse = client.chat.completions.create(model="gpt-3.5-turbo",messages=[{"role": "system", "content": "Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\n"},{"role": "user", f"content": "Context: {context}\n\n---\n\nQuestion: {question}\nAnswer:"}],temperature=0,max_tokens=max_tokens,top_p=1,frequency_penalty=0,presence_penalty=0,stop=stop_sequence,)return response.choices[0].message.strip()except Exception as e:print(e)return ""

测试问答系统

测试来查看输出的质量。
如果系统无法回答预期的问题,则值得搜索原始文本文件,以查看预期已知的信息是否实际上最终被嵌入。

相关文章:

chatGPT2:如何构建一个可以回答有关您网站问题的 AI 嵌入(embeddings)

感觉这个目前没有什么用,因为客户可以直接问通用chatGPT,实时了解你网站内的信息,除非你的网站chatGPT无法访问。 不过自动预订、买票等用嵌入还是挺有用的。 什么是嵌入? OpenAI的嵌入(embeddings)是一种…...

Vue3-新特性defineOptions和defineModel

defineOptions 问题&#xff1a;用了<script setup>后&#xff0c;就无法添加与其平级的属性了&#xff0c;比如定义组件的name或其他自定义的属性。 为了解决这一问题&#xff0c;引入了defineProps与defineEmits这两个宏&#xff0c;但这只解决了props与emits这两个属…...

【计算机基础】通过插件plantuml,实现在VScode里面绘制状态机

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…...

Linux常用基础命令及重要目录,配置文件功能介绍

目录 一&#xff0c;Linux常用必备基础命令 1&#xff0c;网络类命令 2&#xff0c;文件目录类命令 3&#xff0c;操作类命令 4&#xff0c;关机重启命令 5&#xff0c;帮助命令 6&#xff0c;查看显示类命令 7&#xff0c;命令常用快捷键 二&#xff0c;Linux重要目录…...

Oracle登录认证方式详解

文章目录 一、简介二、OS认证三、口令认证四、remote_login_passwordfile 详解 一、简介 在数据库管理中&#xff0c;登录认证是确保数据库安全性的重要环节。Oracle数据库提供 了两种认证方式&#xff0c;一种是“操作系统认证”&#xff0c;一种是“口令文件认证&#xff0c…...

ate测试原理及ate测试系统(软件)知识科普 -纳米软件

ATE(Automatic Test Equipment)测试也叫自动化测试&#xff0c;通过计算机控制测试仪器对被测对象进行测试。以计算机编程代替人工测试&#xff0c;基于测试程序控制仪器并对待测品进行输入和输出信号检测分析&#xff0c;从而判断待测品的性能是否符合要求。 ATE测试需要根据测…...

Linux | 创建 | 删除 | 查看 | 基本命名详解

Linux | 创建 | 删除 | 查看 | 基本命名详解 文章目录 Linux | 创建 | 删除 | 查看 | 基本命名详解前言一、安装Linux1.1 方法一&#xff1a;云服务器方式1.2 方法二&#xff1a;虚拟机方式 二、ls2.2 ll 三、which3.1 ls -ld 四、pwd五、cd5.1 cd .\.5.2 ls -al5.3 重新认识命…...

搭配:基于OpenCV的边缘检测实战

引言 计算机中的目标检测与人类识别物体的方式相似。作为人类&#xff0c;我们可以分辨出狗的形象&#xff0c;因为狗的特征是独特的。尾巴、形状、鼻子、舌头等特征综合在一起&#xff0c;帮助我们把狗和牛区分开来。 同样&#xff0c;计算机能够通过检测与估计物体的结构和性…...

AI大发展:人机交互、智能生活全解析

目录 ​编辑 人工智能对我们的生活影响有多大 人工智能的应用领域 一、机器学习与深度学习 二、计算机视觉 三、自然语言处理 四、机器人技术 五、智能推荐系统 六、智能城市和智能家居 ​编辑 自己对人工智能的应用 自己的人工智能看法&#xff1a;以ChatGPT为例 …...

Django DRF序列化器serializer

以下案例由浅到深&#xff0c;逐步深入&#xff0c;通过实例介绍了序列化器的使用方法&#xff0c;和遇到的常见问题的解决方法。 一、序列化器serializers.Serializer 1、urls.py urlpatterns [path("api/<str:version>/depart/",views.DepartView.as_vie…...

【开源】基于JAVA的衣物搭配系统

项目编号&#xff1a; S 016 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S016&#xff0c;文末获取源码。} 项目编号&#xff1a;S016&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 衣物档案模块2.2 衣物搭配模块2.3 衣…...

Spark---基于Standalone模式提交任务

Standalone模式两种提交任务方式 一、Standalone-client提交任务方式 1、提交命令 ./spark-submit --master spark://mynode1:7077 --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.3.1.jar 100 或者 ./spark-submit --master spark…...

webrtc的RTCPeerConnection使用

背景: 平时我们很少会需要使用到点对点单独的通讯,即p2p,一般都是点对服务端通讯,但p2p也有自己的好处,即通讯不经过服务端,从服务端角度这个省了带宽和压力,从客户端角度,通讯是安全,且快速的,当然有些情况下可能速度并不一定快。那么如何实现p2p呢? 解决办法: …...

【视觉SLAM十四讲学习笔记】第三讲——Eigen库

专栏系列文章如下&#xff1a; 【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍 【视觉SLAM十四讲学习笔记】第二讲——初识SLAM 【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵 本章将介绍视觉SLAM的基本问题之一&#xff1a;如何描述刚体在三维空间中的运动&#xff1f; Eigen…...

Ubuntu开机显示recovering journal,进入emergency mode

在一次正常的shutdown -r now之后&#xff0c;服务器启动不起来了&#xff0c;登录界面显示recovering journal&#xff0c;主要报错信息如下所示&#xff1a; /dev/sda2:recovering journal /dev/sda2:Clearn... You are in emergency mode. After logging in, type journalc…...

C++_String增删查改模拟实现

C_String增删查改模拟实现 前言一、string默认构造、析构函数、拷贝构造、赋值重载1.1 默认构造1.2 析构函数1.3 拷贝构造1.4 赋值重载 二、迭代器和范围for三、元素相关&#xff1a;operator[ ]四、容量相关&#xff1a;size、resize、capacity、reserve4.1 size、capacity4.2…...

LeeCode前端算法基础100题(2)- 最多水的容器

一、问题详情&#xff1a; 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明&#xff1a;…...

排序算法--归并排序

实现逻辑 ① 将序列每相邻两个数字进行归并操作&#xff0c;形成floor(n/2)个序列&#xff0c;排序后每个序列包含两个元素 ② 将上述序列再次归并&#xff0c;形成floor(n/4)个序列&#xff0c;每个序列包含四个元素 ③ 重复步骤②&#xff0c;直到所有元素排序完毕 void pri…...

【LeetCode:1410. HTML 实体解析器 | 模拟+哈希表+字符串+库函数】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…...

基于SSM的公司仓库管理系统(有报告)。Javaee项目

演示视频&#xff1a; 基于SSM的公司仓库管理系统&#xff08;有报告&#xff09;。Javaee项目 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring SpringMvc …...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...