当前位置: 首页 > news >正文

友思特分享 | Neuro-T:零代码自动深度学习训练平台

来源:友思特 智能感知 友思特分享 | Neuro-T:零代码自动深度学习训练平台

欢迎关注虹科,为您提供最新资讯!

工业自动化、智能化浪潮涌进,视觉技术在其中扮演了至关重要的角色。在汽车、制造业、医药、芯片、食品等行业,基于视觉技术实现的缺陷检测具有非常大的需求。对于传统检测方法,目视检查方法能够有效检测非标、具有挑战性的缺陷,传统机器视觉方法具有稳定的速度及准确性,适合重复检测任务。这两种方法具有诸如检测精度、缺陷类型、技术人员成本等局限性。在这种背景下,融合深度学习的视觉检测方案有效地结合了两者的优势,满足了传统检测方法的需求。

为什么要选择友思特 Neuro-T?

深度学习项目流程如上图所示。对于深度学习视觉检测方案:

(1) 高质量的训练数据对于创建高性能的深度学习模型至关重要;

(2) 创建高性能的深度学习模型需要丰富的专业知识。

完成一个深度学习视觉检测项目,需要有丰富经验的行业领域工程师和深度学习工程师。

友思特 Neuro-T为传统的深度学习视觉检测方案提供了“自动深度学习”的解决方案。Neuro-T 软件集成自动深度学习算法,结合自动标注功能,一键生成高性能视觉检测模型,无需AI领域专业知识即可创建深度学习视觉检测模型。

友思特 Neuro-T 平台介绍

友思特 Neuro-T 是一个用于深度学习视觉检测项目的一体化平台,可用于 项目规划→图像预处理→图像标注→模型训练→模型评估 一系列任务。Neuro-T提供了便捷的工具和友好的图形化界面,只需四个步骤即可创建一个深度学习模型:

01 文件页面

第一步是在文件页面导入图像

该页面还提供了如图像切片、图像增强等预处理功能

02 数据页面

第二步从选择模型类型开始。

通过标注,用户可以指示模型要检测的目标

03 训练页面

第三步是验证数据集并启动训练过程

自动深度学习算法使得一键即可完成训练设置

04 结果页面

第四步是评估模型的性能

模型可以基于四个不同的值(Accuracy, Precision, Recall, F1 Score)进行评估

友思特 Neuro-T 的优势特性

自动深度学习算法

深度学习算法分为:自动深度学习算法和现有算法。自动深度学习算法使得每个人都可以轻松地创建高性能的深度学习模型。

自动标注

在大数据量深度学习任务中,标注任务需要耗费大量时间。Neuro-T通过自动标注显著缩短项目周期时间,基于用户已标注的数据来保证后续标注的一致性。

本地云环境

用户可以在安全的环境中与团队成员协作。Neuro-T 的服务端-客户端架构只允许团队成员共享工作区。

流程图和推理中心

流程图可以链接多个不同类型的模型来简化项目设计,如分类+检测模型组合。推理中心可以评估项目流程图的推理时间和准确率,从而以更少的尝试和错误创建最佳模型。

快速再训练

如果出现新的缺陷类型或设计修改,需要重新进行训练,且存在时间延迟和效果下降的问题。Neuro-T 通过自动深度学习和平衡数据,以较短的训练时间实现较高的模型精度。

友思特 Neuro-T 的功能

分类(Classification) 分类正常类型与缺陷类型

分割(Segmentation) 通过分析像素识别特点形状缺陷和位置

目标检测(Object Detection)  识别物体类别、数量和位置

异常检测(Anomaly Detection) 通过仅在正常图像上训练来识别异常图像

字符识别(OCR) 光学字符识别

旋转(Rotation) 旋转图像至正确方位

友思特 Neuro-T 应用案例

1. 汽车用钢材

检测要点:

(1)汽车表面缺陷检测和装配完成检测。

(2)VIN编号识别。

(3)材料表面涂层区域的识别。

(4)无损检测、焊接/卷材/板材检测。

2. 螺栓/螺母组件检测

3. VIN编号识别

4. 其他汽车制造业应用领域

相关文章:

友思特分享 | Neuro-T:零代码自动深度学习训练平台

来源:友思特 智能感知 友思特分享 | Neuro-T:零代码自动深度学习训练平台 欢迎关注虹科,为您提供最新资讯! 工业自动化、智能化浪潮涌进,视觉技术在其中扮演了至关重要的角色。在汽车、制造业、医药、芯片、食品等行业…...

基于动量的梯度下降

丹尼尔林肯 (Daniel Lincoln)在Unsplash上拍摄的照片 一、说明 基于动量的梯度下降是一种梯度下降优化算法变体,它在更新规则中添加了动量项。动量项计算为过去梯度的移动平均值,过去梯度的权重由称为 Beta 的超参数控制。 这有助于解决与普通梯度下降相…...

ELK+kafka+filebeat企业内部日志分析系统

1、组件介绍 1、Elasticsearch: 是一个基于Lucene的搜索服务器。提供搜集、分析、存储数据三大功能。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布…...

MyBatis-Plus: 简化你的MyBatis应用

MyBatis-Plus: 简化你的MyBatis应用 在Java开发中,MyBatis一直是一个受欢迎的持久层框架,提供了灵活的数据访问方式。然而,MyBatis的使用往往涉及许多样板代码,这在一定程度上增加了开发的复杂性。这里,MyBatis-Plus&…...

在 go 的项目中使用验证器

1:使用validate 包验证: 安装包: go get github.com/go-playground/validator/v10 package controllerimport ("fmt""github.com/gin-gonic/gin""github.com/go-playground/validator/v10""net/http&quo…...

Handler系列-sendMessage和post的区别

sendMessage和post基本一样,区别在于post的Runnable会被赋值给Message的callback,在最后调用dispatchMessage的时候,callback会被触发执行。 1.sendMessage 调用sendMessageDelayed发送消息 public class Handler {public final boolean s…...

java中 自动装箱与拆箱,基本数据类型,java堆与栈,面向对象与面向过程

文章目录 自动装箱与拆箱基本数据类型与包装类的区别(int 和 Integer 有什么区别)应用场景的区别: 堆和栈的区别重点来说一下堆和栈:那么堆和栈是怎么联系起来的呢? 堆与栈的区别 很明显:延伸:关于Integer…...

C语言第二十八弹--输入一个非负整数,返回组成它的数字之和

C语言求输入一个非负整数&#xff0c;返回组成它的数字之和 方法一、递归法 思路&#xff1a;设计一个初始条件&#xff0c;通过递归获取非负整数的个位&#xff0c;不断接近递归条件即可。 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h>int DigitSum(int n) {…...

redis---主从复制及哨兵模式(高可用)

主从复制 主从复制&#xff1a;主从复制是redis实现高可用的基础&#xff0c;哨兵模式和集群都是在主从复制的基础之上实现高可用。 主从负责的工作原理 1、主节点&#xff08;master&#xff09; 从节点&#xff08;slave&#xff09;组成&#xff0c;数据复制是单向的&a…...

【不同请求方式在springboot中对应的注解】

GET 请求方法&#xff1a;用于获取资源。使用 GetMapping 注解来处理 GET 请求。 示例代码&#xff1a; RestController public class MyController {GetMapping("/resource")public ResponseEntity<String> getResource() {// 处理 GET 请求逻辑} }POST 请求方…...

前端入门(三)Vue生命周期、组件技术、事件总线、

文章目录 Vue生命周期Vue 组件化编程 - .vue文件非单文件组件组件的注意点组件嵌套Vue实例对象和VueComponent实例对象Js对象原型与原型链Vue与VueComponent的重要内置关系 应用单文件组件构建 Vue脚手架 - vue.cli项目文件结构refpropsmixin插件scoped样式 Vue生命周期 1、bef…...

消息推送到微信,快速实现WxPusher

文章目录 前言一、平台二、代码总结 前言 我的博客里也有其他方法&#xff0c;测试了下感觉这个方法还是比较实用。 一、平台 先仔细阅读下平台的使用方法。 平台地址请点击 二、代码 import requests text 孪生网络模型已经训练完成&#xff0c;请注意查阅相关信息。 req…...

【Spring篇】JDK动态代理

目录 什么是代理&#xff1f; 代理模式 动态代理 Java中常用的代理模式 问题来了&#xff0c;如何动态生成代理类&#xff1f; 动态代理底层实现 什么是代理&#xff1f; 顾名思义&#xff0c;代替某个对象去处理一些问题&#xff0c;谓之代理&#xff0c;那么何为动态&a…...

【从零开始实现意图识别】中文对话意图识别详解

前言 意图识别&#xff08;Intent Recognition&#xff09;是自然语言处理&#xff08;NLP&#xff09;中的一个重要任务&#xff0c;它旨在确定用户输入的语句中所表达的意图或目的。简单来说&#xff0c;意图识别就是对用户的话语进行语义理解&#xff0c;以便更好地回答用户…...

腾讯云点播小程序端上传 SDK

云点播是专门应对上传大视频文件的。 腾讯云点播文档&#xff1a;https://cloud.tencent.com/document/product/266/18177 这个文档比较简单&#xff0c;实在不行&#xff0c;把demo下载下来&#xff0c;一看就明白了&#xff0c;然后再揉一下挪到自己的项目里。完事。 getSign…...

【MATLAB源码-第88期】基于matlab的灰狼优化算法(GWO)的栅格路径规划,输出做短路径图和适应度曲线

操作环境&#xff1a; MATLAB 2022a 1、算法描述 灰狼优化算法&#xff08;Grey Wolf Optimizer, GWO&#xff09;是一种模仿灰狼捕食行为的优化算法。灰狼是群居动物&#xff0c;有着严格的社会等级结构。在灰狼群体中&#xff0c;通常有三个等级&#xff1a;首领&#xff…...

electron使用electron-builder macOS windows 打包 签名 更新 上架

0. 前言 0.1 项目工程 看清目录结构&#xff0c;以便您阅读后续内容 0.2 参考资料 &#xff08;1&#xff09;macOS开发 证书等配置/打包后导出及上架 https://www.jianshu.com/p/c9c71f2f6eac首先需要为Mac App创建App ID&#xff1a; 填写信息如下—Description为"P…...

autojs项目搭建和入门实践

Auto.js 是一款无需root权限的javascript自动化软件&#xff0c;它可以帮助用户在手机上自动执行各种任务&#xff0c;比如自动填写表单、自动点击按钮、自动切换应用等&#xff0c;并且可以通过图形用户界面来管理和编辑脚本。 软件环境 操作系统&#xff1a;win10 VSCODE&…...

uni-app 跨端开发注意事项

文章目录 前言H5正常但App异常的可能性标题二H5正常但小程序异常的可能性小程序正常但App异常的可能性小程序或App正常&#xff0c;但H5异常的可能性App正常&#xff0c;小程序、H5异常的可能性使用 Vue.js 的注意区别于传统 web 开发的注意H5 开发注意微信小程序开发注意支付宝…...

在 vscode 中的json文件写注释,不报错的解决办法

打开 vscode 的「设置」&#xff0c;搜索&#xff1a;files: associations&#xff0c;然后添加 *.json jsonc最后...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...