当前位置: 首页 > news >正文

基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码

基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于法医调查优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用法医调查算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于法医调查优化的PNN网络

法医调查算法原理请参考:https://blog.csdn.net/u011835903/article/details/128172264

利用法医调查算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

法医调查参数设置如下:

%% 法医调查参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,法医调查-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

相关文章:

基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码

基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于法医调查优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…...

canvas高级动画001:文字瀑布流

canvas实例应用100 专栏提供canvas的基础知识,高级动画,相关应用扩展等信息。 canvas作为html的一部分,是图像图标地图可视化的一个重要的基础,学好了canvas,在其他的一些应用上将会起到非常重要的帮助。 文章目录 示例…...

抽象类, 接口, Object类 ---java

目录 一. 抽象类 1.1 抽象类概念 1.2 抽象类语法 1.3 抽象类特性 1.4 抽象类的作用 二. 接口 2.1 接口的概念 2.2 语法规则 2.3 接口的使用 2.4 接口间的继承 2.5 抽象类和接口的区别 三. Object类 3.1 toString() 方法 3.2 对象比较equals()方法 3.3 hash…...

SOAP 协议和 HTTP 协议:深入解读与对比

SOAP 和 HTTP 协议 SOAP 协议 SOAP( Simple Object Access Protocol)是一种用于在节点之间交换结构化数据的网络协议。它使用XML格式来传输消息。它在 HTML 和 SMTP 等应用层协议的基础上进行标记和传输。SOAP 允许进程在整个平台、语言和操作系统中进…...

Unity发布IOS后,使用xcode打包报错:MapFileParser.sh:Permissiondenied

1.错误提示 使用xcode打包错误提示:/Users/mymac/Desktop/myproject/MapFileParser.sh: Permission denied 2.解决方案 打开控制台输入:chmod ax /Users/mymac/Desktop/myproject/MapFileParser.sh。按回车键执行,然后重新使用xcode发布程序…...

2021年12月 Scratch(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 执行下列程序,屏幕上可以看到几只小猫? A:1 B:3 C:4 D:0 答案:B 第2题 下列程序哪个可以实现:按下空格键,播放完音乐后说“你好!”2秒? A: B: C:...

mac上Homebrew的安装与使用

打开终端:command空格 ,搜索‘’终端 ’,打开终端 在终端中输入以下命令并按下回车键: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"这个命令会自动下载并安装…...

YOLOv5 分类模型 预处理 OpenCV实现

YOLOv5 分类模型 预处理 OpenCV实现 flyfish YOLOv5 分类模型 预处理 PIL 实现 YOLOv5 分类模型 OpenCV和PIL两者实现预处理的差异 YOLOv5 分类模型 数据集加载 1 样本处理 YOLOv5 分类模型 数据集加载 2 切片处理 YOLOv5 分类模型 数据集加载 3 自定义类别 YOLOv5 分类模型…...

在arm 64 环境下使用halcon算法

背景: halcon,机器视觉领域神一样得存在,在windows上,应用得特别多, 但是arm环境下使用得很少。那如何在arm下使用halcon呢。按照官方说明,arm下只提供了运行时环境,并且需要使用价值一万多人民…...

H5(uniapp)中使用echarts

1,安装echarts npm install echarts 2&#xff0c;具体页面 <template><view class"container notice-list"><view><view class"aa" id"main" style"width: 500px; height: 400px;"></view></v…...

QLineEdit设置掩码Ip

目的 有时&#xff0c;用单行编辑框想限制输入&#xff0c;但QLineEdit提供的setInputMask()方法用来限制输入字符或者数字还可以&#xff0c;但要做约束&#xff0c;得和验证器结合。 setInputMash()描述 此属性包含验证输入掩码 如果没有设置掩码&#xff0c;inputMask() …...

开源语音大语言模型来了!阿里基于Qwen-Chat提出Qwen-Audio!

论文链接&#xff1a;https://arxiv.org/pdf/2311.07919.pdf 开源代码&#xff1a;https://github.com/QwenLM/Qwen-Audio 引言 大型语言模型&#xff08;LLMs&#xff09;由于其良好的知识保留能力、复杂的推理和解决问题能力&#xff0c;在通用人工智能&#xff08;AGI&am…...

缓存雪崩、击穿、穿透及解决方案_保证缓存和数据库一致性

文章目录 缓存雪崩、击穿、穿透1.缓存雪崩造成缓存雪崩解决缓存雪崩 2. 缓存击穿造成缓存击穿解决缓存击穿 3.缓存穿透造成缓存穿透解决缓存穿透 更新数据时&#xff0c;如何保证数据库和缓存的一致性&#xff1f;1. 先更新数据库&#xff1f;先更新缓存&#xff1f;解决方案 2…...

仿 美图 / 饿了么,店铺详情页功能

前言 UI有所不同&#xff0c;但功能差不多&#xff0c;商品添加购物车功能 正在写&#xff0c;写完会提交仓库。 效果图一&#xff1a;左右RecyclerView 联动 效果图二&#xff1a;通过点击 向上偏移至最大值 效果图三&#xff1a;通过点击 或 拖动 展开收缩公告 效果图四&…...

Redis Cluster主从模式详解

在软件的架构中&#xff0c;主从模式&#xff08;Master-Slave&#xff09;是使用较多的一种架构。主&#xff08;Master&#xff09;和从&#xff08;Slave&#xff09;分别部署在不同的服务器上&#xff0c;当主节点服务器写入数据时&#xff0c;同时也会将数据同步至从节点服…...

Linux技能篇-非交互式修改密码

今天的文章没有格式&#xff0c;简单分享一个小技能&#xff0c;就是标题所说–非交互式修改密码。 一、普通方式修改用户密码 最普通的修改密码的命令就是passwd命令 [rootlocalhost ~]# passwd root Changing password for user root. New password: Retype new password:…...

记一次docker服务启动失败解决过程

环境&#xff1a;centos 7.6 报错&#xff1a;start request repeated too quickly for docker.service 由于服务器修复了内核漏洞&#xff0c;需要重启&#xff0c;没想到重启后&#xff0c;docker启动失败了 查看状态 systemctl status docker如下图 里面有一行提示&…...

npm ERR! node-sass@4.13.0 postinstall: `node scripts/build.js`

npm ERR! node-sass4.13.0 postinstall: node scripts/build.js npm config set sass_binary_sitehttps://npm.taobao.org/mirrors/node-sass npm install npm run dev Microsoft Windows [版本 10.0.19045.2965] (c) Microsoft Corporation。保留所有权利。C:\Users\Administr…...

Java定时任务 ScheduledThreadPoolExecutor

ScheduledThreadPoolExecutor 的创建 ScheduledThreadPoolExecutor executorService new ScheduledThreadPoolExecutor(1, // 核心线程数new BasicThreadFactory.Builder().namingPattern("example-schedule-pool-%d") // 线程命名规则.daemon(true) // 设置线程为…...

Android Studio 显示build variants工具栏

工具栏&#xff1a; 如下图所示 依次点击View-->ToolWindows-->Build Variants。 在此记个笔记...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...