当前位置: 首页 > news >正文

概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

1 离散型随机变量

1.1 0-1分布

设随机变量X的所有可能取值为0与1两个值,其分布律为

在这里插入图片描述

若分布律如上所示,则称X服从以P为参数的(0-1)分布或两点分布。记作X~ B(1,p)

0-1分布的分布律利用表格法表示为:

X01
P1-PP

0-1分布的数学期望E(X) = 0 * (1 - p) + 1 * p = p

1.2 二项分布

二项分布的分布律如下所示:

在这里插入图片描述

其中P是事件在一次试验中发生的概率,称随机变量X服从参数为n,p 的二项分布,记作X~B(n,p)。当n=1时,X为(0-1)分布

二项分布利用表格法也可表示为:

在这里插入图片描述
二项分布的数学期望E(X) = np

1.3 泊松分布

设随机变量X所有可能取值是0,12,…,而取各个值的概率为

在这里插入图片描述

其中λ>0是常数,则称随机变量 X 服从泊松分布,记为 X ~ π(λ)

泊松分布利用表格法可表示为:

在这里插入图片描述
在这里插入图片描述
泊松分布的数学期望E(X) = λ

泊松分布的方差D(X) = λ

1.4 几何分布

记X在独立重复试验中事件A首次发生所进行试验的次数,则

在这里插入图片描述
我们称随机变量X服从几何分布,记作X~G§。

几何分布利用表格法也可表示为:

在这里插入图片描述
几何分布的数学期望E(X) = 1/p

几何分布的方差D(X) = (1-p)/(p*p)

1.5 超几何分布

设有N件产品,其中有M(MSN)件次品。从中任取n(nN)件产品,用X表示取出的n件产
品中次品的件数,则

在这里插入图片描述
我们称随机变量X服从参数为N、M、n的超几何分布

注意:超几何分布为不放回抽样。

2 连续性随机变量

2.1 均匀分布

2.1.1 均匀分布的密度函数

若连续型随机变量X的概率密度

在这里插入图片描述

则称f(x)在(a,b)上服从均匀分布,记作X~U(a,b)

2.1.2 均匀分布的分布函数及图像

均匀分布的分布函数为:

在这里插入图片描述
f(x)与F(x)分别如图所示:

在这里插入图片描述

2.1.3 均匀分布的数学期望及其方差

均匀分布的数学期望E(X) = ( a + b ) / 2

均匀分布的方差D(X) = (( b - a ) ^ 2) / 12

2.2 指数分布

2.2.1 指数分布的概率密度

若连续型随机变量X概率密度为:

在这里插入图片描述
其中λ>0为常数,则称X 服从参数为的指数分布。记作X~ E(λ)

2.2.2 指数分布的分布函数及图像

随机变量X的分布函数和图像为:

在这里插入图片描述
在这里插入图片描述

2.2.3 指数分布的数学期望及其方差

指数分布的数学期望E(X) = 1 / λ

指数分布的方差D(X) = 1 / (λ ^ 2)

2.3 正太分布

2.3.1 一般正太分布的密度函数、分布概率及其图像

若连续型随机变量X的概率密度和图像为:
在这里插入图片描述
在这里插入图片描述

其中μ,σ( σ > 0)为常数,则称服从参数为,的正态分布,记作X~ N(μ, σ * σ),分布函数为:

在这里插入图片描述

2.3.2 标准正太分布的密度函数、分布概率及其图像

当参数 u=0,σ=1时称随机变量X 服从标准正态分布,记作X~N(0,1)。其概率密度及分布函数如下所示:

在这里插入图片描述
在这里插入图片描述
概率密度图像如下所示:

在这里插入图片描述
其概率密度函数的图形如图 (9)所示。由(x)的图形,不难得出如下性质:

在这里插入图片描述

2.3.3 正太分布的数学期望及其方差

正太分布的数学期望E(X) = u

正太分布的方差D(X) = σ

3 数学期望的性质

下面给出数学期望常见的性质:

  1. 设C是常数,则有E©=C。
  2. 设X是一个随机变量,C为常数,则有 E(CY)=CE(Y)
  3. 设X,Y为两个随机变量,则E(XY)=E(Y)E(Y)
  4. 设X,Y 为相互独立的随机变量,则 E(XY)=E(Y)·E(Y)

数学期望E(X)和方差D(X)之间的关系:

在这里插入图片描述

4 方差

4.1 方差的性质

  1. 设C为常数,则D©=0。

  2. @设X是随机变量,C是常数,则有 D(CX)=C^2D(X),D(X+C)=D(X)

  3. 设XY是两个随机变量,则有在这里插入图片描述特别地,若X与Y相互独立,则有D(X+Y)=D(X)+D(Y),D(X-Y)=D(X)+D(Y)

  4. D(Y)=0的充分必要条件是以概率为1 取常数 E(X),即P{ X=E(X) } = 1

4.2 协方差和相关系数

协方差公式: cov(X,Y) = E(XY) - EXEY

协方差公式的几个变形:

在这里插入图片描述
相关系数ρxy公式如下:

在这里插入图片描述

相关文章:

概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

1 离散型随机变量 1.1 0-1分布 设随机变量X的所有可能取值为0与1两个值,其分布律为 若分布律如上所示,则称X服从以P为参数的(0-1)分布或两点分布。记作X~ B(1,p) 0-1分布的分布律利用表格法表示为: X01P1-PP 0-1分布的数学期望E(X) 0 *…...

骨传导耳机的优缺点都有哪些?骨传导耳机值得入手吗?

骨传导耳机的优点还是很多的,相比于传统耳机,骨传导耳机要更值得入手! 下面让我们了解下骨传导耳机的优缺点都有哪些: 一、优点 1、使用更安全 传统的耳机,在使用时会听不到外界的声音,而骨传导耳机通过…...

在ASP.NET Core 中使用 .NET Aspire 消息传递组件

前言 云原生应用程序通常需要可扩展的消息传递解决方案,以提供消息队列、主题和订阅等功能。.NET Aspire 组件简化了连接到各种消息传递提供程序(例如 Azure 服务总线)的过程。在本教程中,小编将为大家介绍如何创建一个 ASP.NET …...

NLP学习

参考:NLP发展之路I - 从词袋模型到Transformer - 知乎 (zhihu.com) NLP大致的发展历史。从最开始的词袋模型,到RNN,到Transformers和BERT,再到ChatGPT,NLP经历了一段不断精进的发展道路。数据驱动和不断完善的端到端的…...

Linux-Ubuntu环境下搭建SVN服务器

Linux-Ubuntu环境下搭建SVN服务器 一、背景二、前置工作2.1确定IP地址保持不变2.2关闭防火墙 三、安装SVN服务器四、修改SVN服务器版本库目录五、调整SVN配置5.1查看需要修改的配置文件5.2修改svnserve.conf文件5.3修改passwd文件,添加账号和密码(window…...

python tkinter使用(四)

本篇文章主要讲下tkinter 的文本框相关. tkinter中用Entry来实现输入框,类似于android中的edittext. 具体的用法如下: 1:空白输入框 如下: name tk.Entry(window) name.pack()2: 设置输入框的默认文案 name tk.Entry(window) name.pack() name.insert(tk.END, "请…...

记录ruoyi-plus-vue部署的问题

ruoyi-vue-plus5.x 后端 ruoyi-vue-plus5.x 前端 前端本地启动命令 # 克隆项目 git clone https://gitee.com/JavaLionLi/plus-ui.git# 安装依赖 npm install --registryhttps://registry.npmmirror.com# 启动服务 npm run dev# 构建生产环境 yarn build:prod # 前端访问地址…...

如何在springboot项目中使用minio上传下载删除文件

引入maven依赖 <!-- minio --> <dependency><groupId>io.minio</groupId><artifactId>minio</artifactId><version>8.2.2</version> </dependency>申请 bucket | access_key | secret_key 项目中配置相关参数 mini…...

SSM个性化旅游管理系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 SSM 个性化旅游管理系统是一套完善的信息系统&#xff0c;结合springMVC框架完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用SSM框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统具有完整的源代码和数据库 &#xff0c;系统主要采用B…...

4-Docker命令之docker version

1.docker version介绍 docker version命令是用于查看docker容器的版本信息 2.docker version用法 docker version [参数] [root@centos79 ~]# docker version --helpUsage: docker version [OPTIONS]Show the Docker version informationOptions:-f, --format string Fo…...

Redis高并发缓存架构

前言&#xff1a; 针对缓存我们并不陌生&#xff0c;而今天所讲的是使用redis作为缓存工具进行缓存数据。redis缓存是将数据保存在内存中的&#xff0c;而内存的珍贵性是不可否认的。所以在缓存之前&#xff0c;我们需要明确缓存的对象&#xff0c;是否有必要缓存&#xff0c;怎…...

谨防利用Redis未授权访问漏洞入侵服务器

说明&#xff1a; Redis是一个开源的&#xff0c;由C语言编写的高性能NoSQL数据库&#xff0c;因其高性能、可扩展、兼容性强&#xff0c;被各大小互联网公司或个人作为内存型存储组件使用。 但是其中有小部分公司或个人开发者&#xff0c;为了方便调试或忽略了安全风险&#…...

关于一些bug的解决1、el-input的输入无效2、搜索之后发现数据不对3、el多选框、单选框点击无用4、

el-input输入无效 原来的代码是 var test null 但是我发现不能输入任何值 反倒修改test的初始值为123是可以的 于是我确定绑定没问题 就是修改的问题 于是改成 var test ref&#xff08;&#xff09; v-model绑定的值改成test.value就可以了 因为ref是相应式的 可以通过输入…...

使用 JavaScript 进行 API 测试的综合教程

说明 API 测试是软件测试的一种形式&#xff0c;涉及直接测试 API 并作为集成测试的一部分&#xff0c;以确定它们是否满足功能、可靠性、性能和安全性的预期。 先决条件&#xff1a; JavaScript 基础知识。Node.js 安装在您的计算机上。如果没有&#xff0c;请在此处下载。npm…...

Vue 2.0源码分析-Virtual DOM

Virtual DOM 这个概念相信大部分人都不会陌生&#xff0c;它产生的前提是浏览器中的 DOM 是很“昂贵"的&#xff0c;为了更直观的感受&#xff0c;我们可以简单的把一个简单的 div 元素的属性都打印出来&#xff0c;如图所示&#xff1a; 可以看到&#xff0c;真正的 DOM …...

(HAL库版)freeRTOS移植STMF103

正点原子关于freeRTOS的教程是比较好的&#xff0c;可惜移植的是标准库&#xff0c;但是我学的是Hal库&#xff0c;因为开发速度更快&#xff0c;从最后那个修改SYSTEM文件夹的地方开始替换为下面的内容就可以了 5.修改Systick中断、SVC中断、PendSV中断 将SVC中断、P…...

vue2-axios

下载axios 开发版本&#xff1a;axios.js 生产版本&#xff1a;axios.min.js 搭建服务器&#xff1a;json-server npm i -g json-serverjson-server --watch db.json&#xff08;启动服务并读取文件&#xff0c;db.json文件目录下启动&#xff09; json-server --watch db.j…...

创建maven的web项目

&#xff08;一&#xff09;创建maven的web项目 Step1、创建一个普通的maven项目 &#xff08;1&#xff09;新建一个empty project&#xff0c;命名为SSM2。 点击项目名&#xff0c;右键new&#xff0c;选择Module&#xff0c;左侧选择“Maven archetype”&#xff0c;可以给…...

使用uniapp开发系统懒加载图片效果

1、创建一个Vue组件 在uniapp项目中&#xff0c;我们可以创建一个独立的Vue组件来实现懒加载图片效果。打开uniapp项目&#xff0c;进入components文件夹&#xff0c;创建一个名为"LazeImage"的组件。 2、编写组件模板 在"LazeImage"组件中&#xff0c;…...

导入PIL时报错

在导入PIL时,报以下错误: 查找原因 参考博客 Could not find a version that satisfies the requirement PIL (from versions: ) No matching distributi-CSDN博客,按照wheel后,安装PIL时,报如下的错误。 查找说是python版本与wheel文件版本不同,确认本机python版本 …...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...