当前位置: 首页 > news >正文

卷积神经网络(CNN)识别验证码

文章目录

  • 一、前言
  • 二、前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
    • 2. 导入数据
    • 3. 查看数据
    • 4.标签数字化
  • 二、构建一个tf.data.Dataset
    • 1.预处理函数
    • 2.加载数据
    • 3.配置数据
  • 三、搭建网络模型
  • 四、编译
  • 五、训练
  • 六、模型评估
  • 七、保存和加载模型
  • 八、预测

一、前言

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

往期精彩内容:

  • 卷积神经网络(CNN)实现mnist手写数字识别
  • 卷积神经网络(CNN)多种图片分类的实现
  • 卷积神经网络(CNN)衣服图像分类的实现
  • 卷积神经网络(CNN)鲜花识别
  • 卷积神经网络(CNN)天气识别
  • 卷积神经网络(VGG-16)识别海贼王草帽一伙
  • 卷积神经网络(ResNet-50)鸟类识别
  • 卷积神经网络(AlexNet)鸟类识别

来自专栏:机器学习与深度学习算法推荐

二、前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL,random,pathlib# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)
data_dir = "code"
data_dir = pathlib.Path(data_dir)all_image_paths = list(data_dir.glob('*'))
all_image_paths = [str(path) for path in all_image_paths]# 打乱数据
random.shuffle(all_image_paths)# 获取数据标签
all_label_names = [path.split("\\")[5].split(".")[0] for path in all_image_paths]image_count = len(all_image_paths)
print("图片总数为:",image_count)

3. 查看数据

plt.figure(figsize=(10,5))for i in range(20):plt.subplot(5,4,i+1)plt.xticks([])plt.yticks([])plt.grid(False)# 显示图片images = plt.imread(all_image_paths[i])plt.imshow(images)# 显示标签plt.xlabel(all_label_names[i])plt.show()

在这里插入图片描述

4.标签数字化

number   = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
char_set       = number + alphabet
char_set_len   = len(char_set)
label_name_len = len(all_label_names[0])# 将字符串数字化
def text2vec(text):vector = np.zeros([label_name_len, char_set_len])for i, c in enumerate(text):idx = char_set.index(c)vector[i][idx] = 1.0return vectorall_labels = [text2vec(i) for i in all_label_names]

二、构建一个tf.data.Dataset

1.预处理函数

def preprocess_image(image):image = tf.image.decode_jpeg(image, channels=1)image = tf.image.resize(image, [50, 200])return image/255.0def load_and_preprocess_image(path):image = tf.io.read_file(path)return preprocess_image(image)

2.加载数据

构建 tf.data.Dataset 最简单的方法就是使用 from_tensor_slices 方法。

AUTOTUNE = tf.data.experimental.AUTOTUNEpath_ds  = tf.data.Dataset.from_tensor_slices(all_image_paths)
image_ds = path_ds.map(load_and_preprocess_image, num_parallel_calls=AUTOTUNE)
label_ds = tf.data.Dataset.from_tensor_slices(all_labels)image_label_ds = tf.data.Dataset.zip((image_ds, label_ds))
image_label_ds
<ZipDataset shapes: ((50, 200, 1), (5, 36)), types: (tf.float32, tf.float64)>
train_ds = image_label_ds.take(1000)  # 前1000个batch
val_ds   = image_label_ds.skip(1000)  # 跳过前1000,选取后面的

3.配置数据

先复习一下prefetch()函数。prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:

BATCH_SIZE = 16train_ds = train_ds.batch(BATCH_SIZE)
train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)val_ds = val_ds.batch(BATCH_SIZE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)
val_ds

三、搭建网络模型

from tensorflow.keras import datasets, layers, modelsmodel = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(50, 200, 1)),#卷积层1,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样layers.Flatten(),                              #Flatten层,连接卷积层与全连接层layers.Dense(1000, activation='relu'),         #全连接层,特征进一步提取layers.Dense(label_name_len * char_set_len),layers.Reshape([label_name_len, char_set_len]),layers.Softmax()                               #输出层,输出预期结果
])
# 打印网络结构
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 48, 198, 32)       320       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 24, 99, 32)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 22, 97, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 11, 48, 64)        0         
_________________________________________________________________
flatten (Flatten)            (None, 33792)             0         
_________________________________________________________________
dense (Dense)                (None, 1000)              33793000  
_________________________________________________________________
dense_1 (Dense)              (None, 180)               180180    
_________________________________________________________________
reshape (Reshape)            (None, 5, 36)             0         
_________________________________________________________________
softmax (Softmax)            (None, 5, 36)             0         
=================================================================
Total params: 33,991,996
Trainable params: 33,991,996
Non-trainable params: 0
_________________________________________________________________

四、编译

model.compile(optimizer="adam",loss='categorical_crossentropy',metrics=['accuracy'])

五、训练

epochs = 20history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/20
63/63 [==============================] - 4s 21ms/step - loss: 3.2998 - accuracy: 0.0934 - val_loss: 2.2876 - val_accuracy: 0.2943
Epoch 2/20
63/63 [==============================] - 1s 9ms/step - loss: 1.7016 - accuracy: 0.5195 - val_loss: 1.2014 - val_accuracy: 0.6314
Epoch 3/20
63/63 [==============================] - 1s 10ms/step - loss: 0.5267 - accuracy: 0.8379 - val_loss: 0.9039 - val_accuracy: 0.7286
Epoch 4/20
63/63 [==============================] - 1s 10ms/step - loss: 0.1911 - accuracy: 0.9442 - val_loss: 0.8609 - val_accuracy: 0.7457
Epoch 5/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0916 - accuracy: 0.9714 - val_loss: 0.8937 - val_accuracy: 0.7886
Epoch 6/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0680 - accuracy: 0.9798 - val_loss: 0.5842 - val_accuracy: 0.8429
Epoch 7/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0443 - accuracy: 0.9900 - val_loss: 0.6235 - val_accuracy: 0.8200
Epoch 8/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0203 - accuracy: 0.9947 - val_loss: 0.7697 - val_accuracy: 0.8029
Epoch 9/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0131 - accuracy: 0.9975 - val_loss: 0.6660 - val_accuracy: 0.8314
Epoch 10/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0227 - accuracy: 0.9940 - val_loss: 0.6018 - val_accuracy: 0.8229
Epoch 11/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0093 - accuracy: 0.9985 - val_loss: 0.5714 - val_accuracy: 0.8429
Epoch 12/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0010 - accuracy: 1.0000 - val_loss: 0.5793 - val_accuracy: 0.8571
Epoch 13/20
63/63 [==============================] - 1s 10ms/step - loss: 2.6284e-04 - accuracy: 1.0000 - val_loss: 0.5920 - val_accuracy: 0.8571
Epoch 14/20
63/63 [==============================] - 1s 10ms/step - loss: 1.8502e-04 - accuracy: 1.0000 - val_loss: 0.6031 - val_accuracy: 0.8571
Epoch 15/20
63/63 [==============================] - 1s 10ms/step - loss: 1.4164e-04 - accuracy: 1.0000 - val_loss: 0.6120 - val_accuracy: 0.8571
Epoch 16/20
63/63 [==============================] - 1s 10ms/step - loss: 1.1334e-04 - accuracy: 1.0000 - val_loss: 0.6198 - val_accuracy: 0.8571
Epoch 17/20
63/63 [==============================] - 1s 10ms/step - loss: 9.4027e-05 - accuracy: 1.0000 - val_loss: 0.6269 - val_accuracy: 0.8571
Epoch 18/20
63/63 [==============================] - 1s 10ms/step - loss: 8.0025e-05 - accuracy: 1.0000 - val_loss: 0.6335 - val_accuracy: 0.8514
Epoch 19/20
63/63 [==============================] - 1s 9ms/step - loss: 6.9294e-05 - accuracy: 1.0000 - val_loss: 0.6396 - val_accuracy: 0.8486
Epoch 20/20
63/63 [==============================] - 1s 10ms/step - loss: 6.0775e-05 - accuracy: 1.0000 - val_loss: 0.6448 - val_accuracy: 0.8486

六、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

七、保存和加载模型

# 保存模型
model.save('model/12_model.h5')
# 加载模型
new_model = tf.keras.models.load_model('model/12_model.h5')

八、预测

def vec2text(vec):"""还原标签(向量->字符串)"""text = []for i, c in enumerate(vec):text.append(char_set[c])return "".join(text)plt.figure(figsize=(10, 8))            # 图形的宽为10高为8for images, labels in val_ds.take(1):for i in range(6):ax = plt.subplot(5, 2, i + 1)  # 显示图片plt.imshow(images[i])# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0) # 使用模型预测验证码predictions = model.predict(img_array)plt.title(vec2text(np.argmax(predictions, axis=2)[0]))plt.axis("off")

在这里插入图片描述

相关文章:

卷积神经网络(CNN)识别验证码

文章目录 一、前言二、前期工作1. 设置GPU&#xff08;如果使用的是CPU可以忽略这步&#xff09;2. 导入数据3. 查看数据4.标签数字化 二、构建一个tf.data.Dataset1.预处理函数2.加载数据3.配置数据 三、搭建网络模型四、编译五、训练六、模型评估七、保存和加载模型八、预测 …...

使用 PyODPS 采集神策事件数据

文章目录 一、前言二、数据采集、处理和入库2.1 获取神策 token2.2 请求神策数据2.3 数据处理-面向数组2.4 测试阿里云 DataFrame 入库2.5 调度设计与配置2.6 项目代码整合 三、小结四、花絮-避坑指南第一坑&#xff1a;阿里云仅深圳节点支持神策数据第二坑&#xff1a;神策 To…...

罗技M590鼠标usb优联连接不上

手里有一个罗技M590鼠标从18年4月一直用到现在&#xff0c;质量很好&#xff0c;除了滚轮有些松别的没毛病。最近一台笔记本电脑办公不太够用&#xff0c;又领了一个台式机&#xff0c;就想到M590支持双模连接&#xff0c;并且支持Flow&#xff0c;就把usb优联接收器从电池仓拿…...

天池 机器学习算法(一): 基于逻辑回归的分类预测

pytorch实战 课时7 神经网络 MSE的缺点&#xff1a;偏导值在输出概率值接近0或者接近1的时候非常小&#xff0c;这可能会造成模型刚开始训练时&#xff0c;偏导值几乎消失&#xff0c;模型速度非常慢。 交叉熵损失函数&#xff1a;平方损失则过于严格&#xff0c;需要使用更合…...

45岁后,3部位“越干净”,往往身体越健康,占一个也要恭喜!

众所周知&#xff0c;人的生命有长有短&#xff0c;而我们的身体健康状态&#xff0c;也同样会受到年龄的影响&#xff0c;就身体的年龄层次而言&#xff0c;往往需要我们用身体内部的干净程度来维持&#xff0c;换句话说就是&#xff1a;若是你的身体内部越干净&#xff0c;那…...

Windows安装Hadoop运行环境

1、下载Hadoop 2、解压Hadoop tar zxvf hadoop-3.1.1.tar.gz3、设置Hadoop环境变量 3.1.1、系统环境变量 # HADOOP_HOME D:\software\hadoop-3.1.13.1.2、Path 环境变量 %HADOOP_HOME%\bin %HADOOP_HOME%\sbin3.1.3、修改Hadoop文件JAVA_HOME 注 : 路径中不要出现空格 ,…...

软件测试 | MySQL 主键约束详解:保障数据完整性与性能优化

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…...

深入了解Linux中的scp命令及高级用法

Linux操作系统中&#xff0c;scp&#xff08;Secure Copy Protocol&#xff09;命令是一个用于在本地系统和远程系统之间安全复制文件的强大工具。通过基于SSH的加密通信&#xff0c;scp提供了安全的文件传输方式。在本文中&#xff0c;我们将深入介绍scp命令的基本语法以及一些…...

moviepy 视频剪切,拼接,音频处理

官网 使用matplotlib — moviepy-cn 文档 案例 from moviepy.editor import * from moviepy.video.fx import resize from PIL import Imagefile1r"D:\xy_fs_try\video_to_deal\spider_video\file\vedeo3.mp4" file2r"D:\xy_fs_try\video_to_deal\spider_video\…...

ubuntu搭建phpmyadmin+wordpress

Ubuntu搭建phpmyadmin wordpress Linux系统设置&#xff1a;Ubuntu 22配置apache2搭建phpmyadmin配置Nginx环境&#xff0c;搭建wordpress Linux系统设置&#xff1a;Ubuntu 22 配置apache2 安装apache2 sudo apt -y install apache2设置端口号为8080 sudo vim /etc/apache…...

linux网络之网络层与数据链路层

文章目录 一、网络层 1.IP协议 2.IP协议头格式 3.网段划分 4.特殊ip地址 5.IP地址的数量限制 6.私有ip和公网IP 7.路由 二、数据链路层 1.以太网 2.以太网帧格式 3.MAC地址 4.对比理解MAC地址和IP地址 5.MTU 6.ARP协议 ARP协议的工作流程 ARP数据报的格式 7.DNS 8.ICMP协议 9.N…...

python数学建模之Numpy、Pandas学习与应用介绍

文章目录 Numpy学习1 Numpy 介绍与应用1-1Numpy是什么 2 NumPy Ndarray 对象3 Numpy 数据类型4 Numpy 数组属性 Pandas学习1 pandas新增数据列2 Pandas数据统计函数3 Pandas对缺失值的处理 总结关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品P…...

LiveVIS视图库1400-如何切换数据库?默认使用的数据库是什么?如何切换到Mysql/MariaDB?

LiveVIS视图库1400-如何切换数据库&#xff1f;默认使用的数据库是什么&#xff1f;如何切换到Mysql/MariaDB? 1、切换成Mysql/Mariadb数据库1.1 连接数据库1.2 创建数据库实例1.3 配置.ini文件1.4 重启完成切换 1、切换成Mysql/Mariadb数据库 LiveVIS 默认使用 sqlite3 文件…...

【2023.11.24】Mybatis基本连接语法学习➹

基本配置 1.如果使用Maven管理项目&#xff0c;需要在pom.xml中配置依赖。 2.安装Mybatis-3.5.7.jar包 3.进行XML配置&#xff1a;这里将文件命名为mybatis-config.xml 配置数据库连接XML文件 <?xml version"1.0" encoding"UTF-8" ?> <!DO…...

如何防止网络被入侵?

随着互联网的普及&#xff0c;网络安全问题越来越受到人们的关注。其中&#xff0c;如何防止网络被入侵是一个重要的问题。本文将介绍一些防止网络被入侵的方法&#xff0c;帮助大家保护自己的网络安全。 一、使用强密码 强密码是防止网络被入侵的第一道防线。一个好的密码应该…...

【Linux】常见指令及周边知识(一)

【Linux】常见指令及周边知识&#xff08;一&#xff09; 一、初始Linux操作系统1.Linux背景2.如何使用Linux 二、学习Linux之前的预备周边知识&#xff08;重点&#xff09;&#xff1a;1.什么叫做文件&#xff1f;2. Linux下的路径分隔符3.在Linux中为什么会存在路径&#xf…...

【Docker】从零开始:6.配置镜像加速器

【Docker】从零开始&#xff1a;5.配置镜像加速器 什么是镜像加速器&#xff1f;为什么要配置docker镜像加速器?常见的Docker镜像加速器有哪些&#xff1f;如何申请Docker镜像加速器如何配置Docker镜像加速器 什么是镜像加速器&#xff1f; 镜像加速器是一个位于Docker Hub之…...

The Bridge:从临床数据到临床应用(预测模型总结)

The Bridge:从临床数据到临床应用&#xff08;预测模型总结&#xff09; 如果说把临床预测模型比作临床数据和临床应用之间的一座“桥梁”&#xff0c;那它应该包括这样几个环节&#xff1a;模型的构建和评价、模型的概率矫正、模型决策阈值的确定和模型的局部再评价。 模型的构…...

[极客大挑战 2019]Secret File1

[极客大挑战 2019]Secret File1 在bp里面发现secr3t.php 将secr3t.php 直接加在网站后面&#xff0c;发现了有关flag的信息&#xff0c;一个flag.php文件 在遇到flag.php时候&#xff0c;联想到php伪协议&#xff0c;构造伪协议方式 secr3t.php?filephp://filter/readconver…...

如何评估一个论坛或峰会值不值得参加?

现在的论坛和峰会非常多&#xff0c;且都宣传的非常高端&#xff0c;很多人为了不错过机会像赶场一样总在参会路上。但究竟什么样的论坛或峰会才值得一去呢&#xff1f; 评估一个论坛或峰会是否值得参加&#xff0c;需要考虑多个因素。 1、主题与你的兴趣或职业相关性&#xf…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...