LeetCode 1237. Find Positive Integer Solution for a Given Equation【双指针,二分,交互】
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。
为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。
由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。
Given a callable function f(x, y)
with a hidden formula and a value z
, reverse engineer the formula and return all positive integer pairs x
and y
where f(x,y) == z
. You may return the pairs in any order.
While the exact formula is hidden, the function is monotonically increasing, i.e.:
f(x, y) < f(x + 1, y)
f(x, y) < f(x, y + 1)
The function interface is defined like this:
interface CustomFunction {
public:// Returns some positive integer f(x, y) for two positive integers x and y based on a formula.int f(int x, int y);
};
We will judge your solution as follows:
- The judge has a list of
9
hidden implementations ofCustomFunction
, along with a way to generate an answer key of all valid pairs for a specificz
. - The judge will receive two inputs: a
function_id
(to determine which implementation to test your code with), and the targetz
. - The judge will call your
findSolution
and compare your results with the answer key. - If your results match the answer key, your solution will be
Accepted
.
题意:给你一个函数 f(x, y)
和一个目标结果 z
,函数公式未知,计算方程 f(x,y) == z
所有可能的正整数 数对 x
和 y
。满足条件的结果数对可以按任意顺序返回。尽管函数的具体式子未知,但它是单调递增函数,也就是说:
f(x, y) < f(x + 1, y)
f(x, y) < f(x, y + 1)
解法1 双重循环
由于数据不大,可以直接暴力循环。
- 时间复杂度:O(n2)O(n^2)O(n2)
- 空间复杂度:O(1)O(1)O(1)
class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> ans;for (int x = 1; x <= 1000; ++x) {for (int y = 1; y <= 1000; ++y) {if (customfunction.f(x, y) == z) ans.push_back({x, y});}}return ans;}
};
解法2 二分
类似LeetCode 15 三数之和,循环遍历 xxx ,然后对单调递增的 yyy 进行二分搜索。
- 时间复杂度:O(nlogn)O(n\log n)O(nlogn) 。
- 空间复杂度:O(1)O(1)O(1)
class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> ans;for (int x = 1; x <= 1000; ++x) {int yl = 1, yh = 1000;while (yl <= yh) {int mid = (yl + yh) / 2, tz = customfunction.f(x, mid);if (tz == z) {ans.push_back({x, mid});break;} else if (tz > z) yh = mid - 1; // 说明y太大了else yl = mid + 1;}}return ans;}
};
解法3 抽象BST
官解告诉我们这是240题搜索二维矩阵II的变形题,如果题目读不懂,不妨看看本题前身240题搜索二维矩阵II是一道怎样的题目——这道题的题目含义就非常清晰了。最关键的信息在于,对于给定的 m×nm \times nm×n 矩阵 matrix
,存在以下性质:
- 每行的元素从左到右升序排列
- 每列的元素从上到下升序排列
用数学语言来表达的话,就是对于下标为 (x,y)(x, y)(x,y) 的元素 matrix[x][y]matrix[x][y]matrix[x][y] ,(在不越界的情况下)一定存在以下两个关系:
- matrix[x][y]<matrix[x][y+1]matrix[x][y] < matrix[x][y+1]matrix[x][y]<matrix[x][y+1] ,即同一行的元素从左往右单调递增
- matrix[x][y]<matrix[x+1][y]matrix[x][y] < matrix[x+1][y]matrix[x][y]<matrix[x+1][y] ,即同一列的元素从上往下单调递增
我们对240题的搜索过程如下所示:
如果我们把整个矩阵matrix
看作是一棵二叉树,每一个值都是一个节点,把起始点 (0,n−1)(0, n-1)(0,n−1) 看作根节点,左边的值看作是左节点,下面的值看作是右节点,那么这个二维矩阵可以抽象成一颗二叉搜索树BST。我们的搜寻过程,其实也遵循BST的搜索原则。
从而对于本题,我们也可以这么做:
- 把解也就是
x
和y
类似上图一样,看做一个二维矩阵,高宽均是1000(取值范围) - 从二维数组右上角开始,即 x=1,y=1000x = 1, y = 1000x=1,y=1000 为起始点,将这个起始点看为二叉搜索树的根节点
- 由于函数方程具有单调性,也就是任一点向左 (y−1)(y - 1)(y−1) 结果递减,任一点向下 (x+1)(x+1)(x+1) 结果递增
- 从起始点来看,向左对应二叉搜索树的左子结点,向下对应二叉搜索树的右子结点
- 从起始点逐个得到当前 xxx 和 yyy 的方程结果,比目标值大则向左移动,比目标值小则向下移动
- 特别处理:如果已经找到了当前方程的解之一,怎么移动都可以,往左或往下或往左下都行。
完整代码如下所示:
- 时间复杂度:O(n)O(n)O(n) 。
- 空间复杂度:O(1)O(1)O(1) 。
class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> ans;int x = 1, y = 1000; // x向右,f=(x,y)递增,y向下,f(x,y)递减while (x <= 1000 && y >= 1) {int tz = customfunction.f(x, y);if (tz == z) { // x,y合适ans.push_back({x, y});++x; // 或者--y} else if (tz < z) ++x; // tz太小,增加x以增加tzelse --y; // tz太大,减少y以减少tz}return ans;}
};
相关文章:

LeetCode 1237. Find Positive Integer Solution for a Given Equation【双指针,二分,交互】
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...

【C语言】结构体进阶
一、结构体 1. 结构体的声明 (1) 结构的基础知识 结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。(2)结构的声明 struct tag {member-list; }variable-list;例如描述一个学生&#x…...
全志T3+FPGA国产核心板——Pango Design Suite的FPGA程序加载固化
本文主要基于紫光同创Pango Design Suite(PDS)开发软件,演示FPGA程序的加载、固化,以及程序编译等方法。适用的开发环境为Windows 7/10 64bit。 测试板卡为全志T3+Logos FPGA核心板,它是一款基于全志科技T3四核ARM Cortex-A7处理器 + 紫光同创Logos PGL25G/PGL50G FPGA设计…...

深度学习之 imgaug (图像增强)学习笔记
深度学习之 imgaug (图像增强)前言1\. 安装和卸载2\. 示例2.1 基本使用2.2 包含常用的变换示例3 Augmenters常用函数3.1 iaa.Sequential()3.2 iaa.someOf()3.3 iaa.OneOf()3.4 iaa.Sometimes()3.5 iaa.WithColorspace()3.6 iaa.WithChannels()3.7 iaa.No…...

mysql字符串等值查询中条件字段值末尾有空格也能查到数据问题
一、事故还原 我们仍然使用学生信息表,但是我们只需要保留两个字段即可: CREATE TABLE student_info (id int(11) NOT NULL AUTO_INCREMENT COMMENT 学号,name varchar(20) CHARACTER SET utf8 DEFAULT NULL COMMENT 姓名, PRIMARY KEY (id) ) ENGINEIn…...
一个关于事件溯源Event Sourcing的小荔枝,Golang实现
最后更新于2023年3月1日 10:23:13 参考的这个文章:https://martinfowler.com/eaaDev/EventSourcing.html 用C sharp实现的,我改写成Golang了 最简单的例子 func main() {eProc : NewEventProcessor()//refact : Cargo{Name: "Refactoring"}…...

Vue3 组合式函数,实现minxins
截至目前,组合式函数应该是在VUE 3应用程序中组织业务逻辑最佳的方法。它让我们可以把一些小块的通用逻辑进行抽离、复用,使我们的代码更易于编写、阅读和维护。 一. 什么是“组合式函数”? 根据官方文档说明,在 Vue 应用的概念中…...

什么是钉钉消息推送?
我是3y,一年CRUD经验用十年的markdown程序员👨🏻💻常年被誉为职业八股文选手 在前阵子我就已经接入了钉钉的群机器人和工作消息推送,一直没写文章同步到给大家。 像这种接入渠道的工作,虽然我没接入过&…...

利用 NVIDIATAO 和 WeightBias 加速AI开发
利用 NVIDIATAO 和 Weight&Bias 加速AI开发 利用图像分类、对象检测、自动语音识别 (ASR) 和其他形式的 AI 可以推动公司和商业部门内部的大规模转型。 然而,从头开始构建人工智能和深度学习模型是一项艰巨的任务。 构建这些模型的一个共同先决条件是拥有大量高…...
token - 令牌
文章目录token - 令牌学前须知:1,base64 防君子不防小人2,SHA-256 安全散列算法的一种(hash)3,HMAC-SHA2564,RSA256 非对称加密2.1 JWT - json-web-token1,三大组成2,jwt…...

应用模型开发指南上新介绍
Module、HAP、Ability、AbilitySta-ge、Context……您是否曾经被这些搞不懂又绕不开的知识点困扰? 现在,全新的《应用程序包基础知识》及《应用模型开发指南》为您答疑解惑! 这里有您关注的概念解析、原理机制阐述,也有丰富的…...

Dbeaver连接Hive数据库操作指导
背景:由于工作需要,当前分析研究的数据基于Hadoop的Hive数据库中,且Hadoop服务端无权限进行操作且使用安全模式,在研究了Dbeaver、Squirrel和Hue三种连接Hive的工具,在无法绕开useKey认证的情况下,只能使用…...

【RabbitMQ笔记09】消息队列RabbitMQ之常见方法的使用
这篇文章,主要介绍消息队列RabbitMQ之常见方法的使用。 目录 一、消息队列常见方法 1.1、连接工厂ConnectionFactory 1.2、连接Connection 1.3、通道Channel 1.4、交换机相关方法 (1)exchangeDeclare()声明交换机 1.5、队列相关方法 …...

Linux字符设备驱动模型之设备号
从上文中可知,在Linux用户空间中,如若需要操作硬件设备,均通过/dev目录下的设备文件节点进行操作,基本上每一种设备都会存在一个或者多个的设备节点。 并且在Linux内核中,其表示字符设备的结构成员也提供了相应的设备号…...

C++多态原理
请看下面的程序,该程序演示了多态类对象存储空间的大小。 #include <iostream> using namespace std; class A {public:int i;virtual void func() {}virtual void func2() {} }; class B : public A {int j;void func() {} }; int main() {cout << si…...

PMP认证与NPDP认证哪个含金量高?
两个证涉及的领域不一样的,一个是项目管理,对应的是项目经理;一个是产品管理,对应的是产品经理。含金量不能相比,但在各自的领域的含金量是很高的,至少专业程度或者知名度是最高的。 我来分别说一下PMP认证…...

改进YOLOv7-Tiny系列:首发改进结合BiFPN结构的特征融合网络,网络融合更多有效特征,高效涨点
💡该教程为改进进阶指南,属于《芒果书》📚系列,包含大量的原创首发改进方式, 所有文章都是全网首发原创改进内容🚀 内容出品:CSDN博客独家更新 @CSDN芒果汁没有芒果 💡本篇文章 基于 YOLOv5、YOLOv7芒果改进YOLO系列:芒果改进YOLOv7-Tiny系列:首发改进结合BiFPN结…...

PPC Insights系列:洞见安全多方图联邦
开放隐私计算开放隐私计算开放隐私计算OpenMPC是国内第一个且影响力最大的隐私计算开放社区。社区秉承开放共享的精神,专注于隐私计算行业的研究与布道。社区致力于隐私计算技术的传播,愿成为中国 “隐私计算最后一公里的服务区”。183篇原创内容公众号知…...
SQLite注入记录(目前最全、核心函数用法、布尔盲注、时间盲注、webshell、动态库,绕过方式)
目录 与Mysql区别 全部核心函数 普通注入 查询所有列 查看所有表名...

Java简单的生成/解析二维码(zxing qrcode)
Hi I’m Shendi Java简单的生成/解析二维码(zxing qrcode) 在之前使用 qrcode.js 方式生成二维码,但在不同设备上难免会有一些兼容问题,于是改为后端(Java)生成二维码图片 这里使用 Google 的 zxing包 Jar…...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...

【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...