当前位置: 首页 > news >正文

语音识别入门——常用软件及python运用

工具以及使用到的库

  • ffmpeg
  • sox
  • audacity
  • pydub
  • scipy
  • librosa
  • pyAudioAnalysis
  • plotly

本文分为两个部分:

P1如何使用ffmpeg和sox处理音频文件
P2如何编程处理音频文件并执行基本处理


P1 处理语音数据——命令行方式


格式转换

ffmpeg -i video.mkv audio.mp3

使用ffmpeg将输入mkv文件转为mp3文件


降采样、通道转换

ffmpeg -i audio.wav -ar 16000 -ac 1 audio_16K_mono.wav
  • ar:声频采样率(audio rate)
  • ac:声频通道(audio channel)
    此处是将原来44.1kHz的双通道wav文件转为单通道wav文件

获取音频信息

ffmpeg -i audio_16K_mono.wav

将得到

Input #0, wav, from ‘audio_16K_mono.wav’:
Metadata:
encoder : Lavf57.71.100
Duration: 00:03:10.29, bitrate: 256 kb/s
Stream #0:0: Audio: pcm_s16le ([1][0][0][0] / 0x0001), 16000 Hz,
mono, s16, 256 kb/s
  • #0表示只有一个通道
  • encoder:为libavformat支持的一种容器
  • Duration:时长
  • bitrate:比特率256kb/s,表示音频每秒传输的数据量,高质量音频一般比较大
  • Stram:流
  • #0:0:单通道
  • pcm_s16le:
    • pcm(脉冲编码调制,pulse-code modulation)
    • signed integer 16:(16位有符号整型)格式采样
    • le表示小端(little endian),高位数据存地址高位,地位数据存地址地位,有如[1][0][0][0] / 0x0001。
  • mono:单通道

小插曲

最近看到一道数据类型题
题目:为什么float类型 ( 1 e 10 + 3.14 ) − 1 e 10 = 0 ? \mathbf{(1e10+3.14)-1e10=0?} (1e10+3.14)1e10=0?
解题如下:
1 e 10 \mathbf{1e10} 1e10二进制表示为:
001 0 ′ 010 1 ′ 010 0 ′ 000 0 ′ 101 1 ′ 111 0 ′ 010 0 ′ 000 0 ′ 0000 \mathbf{0010'0101'0100'0000'1011'1110'0100'0000'0000} 001001010100000010111110010000000000
或者表示为
1.001 0 ′ 101 0 ′ 000 0 ′ 010 1 ′ 111 1 ′ 001 0 ′ 000 0 ′ 000 0 ′ 0 2 ∗ 2 33 \mathbf{1.0010'1010'0000'0101'1111'0010'0000'0000'0_2*2^{33}} 1.0010101000000101111100100000000002233

浮点数三要素

  • 首位:0表示正数,1表示负数
  • 中间位,8位,为科学计数法指数部分,上例为33与偏置量(127)的和,此例为160,二进制为1010’0000
  • 尾部:23位,二进制表示的小数部分的前23位,此例为0010’1010’0000’0101’1111’001
    1 e 10 \mathbf{1e10} 1e10的浮点数为:
    0 ′ 101 0 ′ 000 0 ′ 001 0 ′ 101 0 ′ 000 0 ′ 010 1 ′ 111 1 ′ 001 \mathbf{0'1010'0000'0010'1010'0000'0101'1111'001} 01010000000101010000001011111001
    到此为止,可知舍去了科学计数法中小数部分的后10位

小数的二进制表示两个要素

  • 整数部分:正常表示,3.14整数部分为0011
  • 小数部分:乘以2取整数部分,
    • 0.14*2=0.28 取0
    • 0.28*2=0.56 取0
    • 0.56*2=1.12 取1
    • 0.12*2=0.24 取0
    • 0.24*2=0.48 取0
    • 0.48*2=0.96 取0
    • 0.96*2=1.92 取1

3.14的二进制表示为:
11.0010001... \mathbf{11.0010001...} 11.0010001...
综上, 1 e 10 + 3.14 \mathbf{1e10+3.14} 1e10+3.14的二进制表示为:
1.001 0 ′ 101 0 ′ 000 0 ′ 010 1 ′ 111 1 ′ 001 0 ′ 000 0 ′ 000 1 ′ 1001 ’ 000 1 2 ∗ 2 33 \mathbf{1.0010'1010'0000'0101'1111'0010'0000'0001'1001’0001_2*2^{33}} 1.001010100000010111110010000000011001’00012233
转为浮点数,为
0 ′ 101 0 ′ 000 0 ′ 001 0 ′ 101 0 ′ 000 0 ′ 010 1 ′ 111 1 ′ 001 \mathbf{0'1010'0000'0010'1010'0000'0101'1111'001} 01010000000101010000001011111001
1 e 10 \mathbf{1e10} 1e10一样,故float类型 ( 1 e 10 + 3.14 ) − 1 e 10 = 0 \mathbf{(1e10+3.14)-1e10}=0 (1e10+3.14)1e10=0


修剪音频

ffmpeg -i audio.wav -ss 60 -t 20 audio_small.wav
  • i:输入音频audio.wav
  • ss: 截取起始秒
  • t:截取段时长
  • audio_small.wav:输出文件

串联视频

新建一个list_of_files_to_concat的txt文档,内容如下:

file 'file1.wav'
file 'file2.wav'
file 'file3.wav'

采用以下命令行,可将三个文件串联输出,编码方式为复制

ffmpeg -f concat -i list_of_files_to_concat -c copy output.wav

分割视频

以下命令行将输入视频分割为1s一个

ffmpeg -i output.wav -f segment -segment_time 1 -c copy out%05d.wav

交换声道

ffmpeg -i stereo.wav -map_channel 0.0.1 -map_channel 0.0.0 stereo_inverted.wav
  • 0.0.1输入文件音频流右声道
  • 0.0.0输入文件音频流左声道

合并声道

ffmpeg -i left.wav -i right.wav -filter_complex "[0:a][1:a]join=inputs=2:channel_layout=stereo[a]" -map "[a]" mix_channels.wav
  • filter_complex:复杂音频滤波器图
  • [0:a],[1:a]:第一个和第二个文件的音频流
  • join=inputs=2:表示两个输入流混合
  • channel_layout=stereo:混合后输出为立体声
  • [a]:输出音频流标签
  • map ”[a]":将‘[a]'标签的音频流映射到输出文件

分割立体声音频为左右单声道文件

ffmpeg -i stereo.wav -map_channel 0.0.0 left.wav -map_channel 0.0.1 right.wav
  • map_channel 0.0.0:将左声道映射到第一个输出文件
  • map_channel 0.0.1:将右声道映射到第二个输出文件

将某个声道静音

ffmpeg -i stereo.wav -map_channel -1 -map_channel 0.0.1 muted.wav
  • map_channel -1:忽略某声道
  • map_channel 0.0.1:将右声道映射到输出文件

音量调节

ffmpeg -i data/music_44100.wav -filter:a “volume=0.5” data/music_44100_volume_50.wav
ffmpeg -i data/music_44100.wav -filter:a “volume=2.0” data/music_44100_volume_200.wav
  • filter:a:使用音频过滤器
  • “volume=0.5”:将音频音量变为原来一半
  • “volume=2”:将音频音量变为原来两倍
    声量调节
图1 原声,半声,倍声(自上而下)
由图1可知,二倍声出现削波(失真)现象。

sox音量调节

sox -v 0.5 data/music_44100.wav data/music_44100_volume_50_sox.wav
sox -v 2.0 data/music_44100.wav data/music_44100_volume_200_sox.wav

sox -v n \text{sox -v n} sox -v n 输入文件路径 输出文件路径

  • v n:音量调节系数,n可理解为倍数。

P2 处理语音数据——编程方式


  • wav: scipy.io.wavfile
  • mp3:pydub

以数组形式加载音频文件

# 以数组形式读取wav和mp3
from pydub import AudioSegment
import numpy as np
from scipy.io import wavfile# 用 scipy.io.wavfile 读取wav文件
fs_wav, data_wav = wavfile.read("resampled.wav")# 用 pydub 读取mp3
audiofile = AudioSegment.from_file("resampled.mp3")
data_mp3 = np.array(audiofile.get_array_of_samples())
fs_mp3 = audiofile.frame_rateprint('Sq Error Between mp3 and wav data = {}'.format(((data_mp3 - data_wav)**2).sum()/len(data_wav)))
print('Signal Duration = {} seconds'.format(data_wav.shape[0] / fs_wav))
# 输出,我使用ffmpeg将wav转成MP3,比特率将为24kb
Sq Error Between mp3 and wav data = 3775.2859044790266
Signal Duration = 34.5513125 seconds

显示左右声道

import numpy as np
from scipy.io import wavfile
import matplotlib.pyplot as plt
fs,data=wavfile.read('resampled_double.wav')
time=np.arange(0,len(data))/fs
fig,axs=plt.subplots(2,1,figsize=(10,6),sharex=True)
axs[0].plot(time,data[:,0],label='Left Channel',color='blue')
axs[0].set_ylabel('Amplitude')
axs[0].legend()
axs[1].plot(time,data[:,1],label='Right Channel',color='orange')
axs[1].set_ylabel('Amplitute')
axs[1].set_xlabel('Time(seconds)')
axs[1].legend()
plt.suptitle("Stereo Audio Waveform")
plt.show()

左右声道

图2 左右声道展示

正则化

import matplotlib.pyplot as plt
from scipy.io import wavfile
import numpy as np
fs,data = wavfile.read("resampled_double.wav")
time=np.arange(0,len(data))/fs
plt.figure(figsize=(10,4))
plt.plot(time,data[:,0]/2^15)
plt.xlabel('Time(seconds)')
plt.ylabel('Amplitude')
plt.title('Stereo Audio Waveform')

量化后的波形图

图3 数据量化后的波形图

修剪音频

# 显示2到4秒的波形
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
fs,data=wavfile.read('resampled_double.wav')
time=np.arange(0,len(data[2*fs:4*fs]))/fs
plt.figure(figsize=(10,4))
plt.plot(time,data[2*fs:4*fs])
plt.xlabel('Time/s')
plt.ylabel('Amplitude')
plt.title('Stereo Audio Waveform')
plt.show()

剪辑音频

图4 剪辑后音频波形

分割为固定大小

import numpy as np
from scipy.io import wavfile
import IPython
fs,signal=wavfile.read("resampled.wav")
segment_size_t=1
segment_size=segment_size_t*fs
segments=[signal[x:x+segment_size]for x in range(0,len(signal),segment_size)]
for i,s in enumerate(segments):if len(s)<segment_size:s=np.pad(s,(0,(segment_size-len(s))),'constant')		# 这里是为了每个clip都为1swavfile.write(f"resampled_segment_{i}_{i+1}.wav",fs,s)
IPython.display.display(IPython.display.Audio("resampled_segment_34_35.wav"))
# 输出,成功输出35个1s的wav文件

简单算法——删去无声片段

import IPython
import matplotlib.pyplot as plt
import numpy as np
energies=[((s/2**15)**2).sum()/len(s) for s in segments]	# 防止溢出
thres=np.percentile(energies,20)
indices_of_segments_to_keep=(np.where(energies>thres)[0])
segments2=np.array(segments)[indices_of_segments_to_keep]
new_signal=np.concatenate(segments2)
wavfile.write("processed_new.wav",fs,new_signal.astype(np.int16))	# 转成int
plt.figure(figsize=(10,6))
plt.plot(energies,label="Energies",color="red")
plt.plot(np.ones(len(energies))*thres,label="Thresholds",color="blue")
plt.title("Energies VS Thresholds")
plt.legend()
plt.show()
IPython.display.display(IPython.display.Audio("processed_new.wav"))
IPython.display.display(IPython.display.Audio("resampled.wav"))

过滤静音片段
音频的时长

图5 根据能量无声片段的删除及删除后的时长

往单声道音频中加入节拍

import numpy as np
import scipy.io.wavfile as wavfile
import librosa
import IPython
import matplotlib.pyplot as plt# 加载文件并提取节奏和节拍:
[Fs, s] = wavfile.read('resampled.wav')
tempo, beats = librosa.beat.beat_track(y=s.astype('float'), sr=Fs, units="time")
beats -= 0.05# 在每个节拍的第二个声道上添加小的220Hz声音
s = s.reshape(-1, 1)
s = np.array(np.concatenate((s, np.zeros(s.shape)), axis=1))
for ib, b in enumerate(beats):t = np.arange(0, 0.2, 1.0 / Fs)amp_mod = 0.2 / (np.sqrt(t)+0.2) - 0.2amp_mod[amp_mod < 0] = 0x = s.max() * np.cos(2 * np.pi * t * 220) * amp_mods[int(Fs * b): int(Fs * b) + int(x.shape[0]), 1] = x.astype('int16')# 写入一个wav文件,其中第二个声道具有估计的节奏:
wavfile.write("tempo.wav", Fs, np.int16(s))# 在笔记本中播放生成的文件:
IPython.display.display(IPython.display.Audio("tempo.wav"))# 绘制波形图
time = np.arange(0, len(s)) / Fs
fig, axs = plt.subplots(2, 1, figsize=(10, 6), sharex=True)
axs[0].plot(time, s[:, 0], label='左声道', color='orange')
axs[0].set_ylabel('振幅')
axs[0].legend()
axs[1].plot(time, s[:, 1], label='右声道', color='blue')
axs[1].set_xlabel("时间/秒")
axs[1].set_ylabel("振幅")
axs[1].legend()
plt.show()

tempo&beats音频

图6 添加tempo的左右声道及音频

实时录制以及频率分析

# paura_lite:
# 一个超简单的命令行音频录制器,具有实时频谱可视化import numpy as np
import pyaudio
import struct
import scipy.fftpack as scp
import termplotlib as tpl
import os# 获取窗口尺寸
rows, columns = os.popen('stty size', 'r').read().split()buff_size = 0.2          # 窗口大小(秒)
wanted_num_of_bins = 40  # 要显示的频率分量数量# 初始化声卡进行录制:
fs = 8000
pa = pyaudio.PyAudio()
stream = pa.open(format=pyaudio.paInt16, channels=1, rate=fs,input=True, frames_per_buffer=int(fs * buff_size))while 1:  # 对于每个录制的窗口(直到按下Ctrl+C)# 获取当前块并将其转换为short整数列表,block = stream.read(int(fs * buff_size))format = "%dh" % (len(block) / 2)shorts = struct.unpack(format, block)# 然后进行归一化并转换为numpy数组:x = np.double(list(shorts)) / (2**15)seg_len = len(x)# 获取当前窗口的总能量并计算归一化因子# 用于可视化最大频谱图值energy = np.mean(x ** 2)max_energy = 0.02  # 条形设置为最大的能量max_width_from_energy = int((energy / max_energy) * int(columns)) + 1if max_width_from_energy > int(columns) - 10:max_width_from_energy = int(columns) - 10# 获取FFT的幅度和相应的频率X = np.abs(scp.fft(x))[0:int(seg_len/2)]freqs = (np.arange(0, 1 + 1.0/len(X), 1.0 / len(X)) * fs / 2)# ... 并重新采样为固定数量的频率分量(用于可视化)wanted_step = (int(freqs.shape[0] / wanted_num_of_bins))freqs2 = freqs[0::wanted_step].astype('int')X2 = np.mean(X.reshape(-1, wanted_step), axis=1)# 将(频率,FFT)作为水平直方图绘制:fig = tpl.figure()fig.barh(X2, labels=[str(int(f)) + " Hz" for f in freqs2[0:-1]],show_vals=False, max_width=max_width_from_energy)fig.show()# 添加足够多的新行以清除屏幕在下一次迭代中:print("\n" * (int(rows) - freqs2.shape[0] - 1))

频谱

图7 实时录制并获取频谱直方图

相关文章:

语音识别入门——常用软件及python运用

工具以及使用到的库 ffmpegsoxaudacitypydubscipylibrosapyAudioAnalysisplotly 本文分为两个部分&#xff1a; P1&#xff1a;如何使用ffmpeg和sox处理音频文件 P2&#xff1a;如何编程处理音频文件并执行基本处理 P1 处理语音数据——命令行方式 格式转换 ffmpeg -i video…...

maven 将Jar包安装到本地仓库

window系统&#xff1a; 注意事项&#xff1a;在windows中&#xff0c;使用mvn指令将jar安装到本地仓库时&#xff0c;一定要将相关资源使用“"”包裹上&#xff0c;不然会报下面的错&#xff1a; mvn install:install-file "-DfileD:\BaiduNetdiskDownload\qianzixi…...

Django ORM查询之聚合函数、聚合查询(aggregate)、分组查询(annotate)

django 版本 3.2 python 3.6.8 一、聚合函数 常见的五个聚合函数&#xff1a; Avg (Average) : 平均值Max (Maximum) : 最大值Min (Minimum) : 最小值Sum (Summary) : 求和Count : 个数 导入语句&#xff1a; from django.db.models import Avg, Max, Min, Sum, Count, Q, …...

构建个性化预约服务:预约上门服务系统源码解读与实战

随着社会的发展&#xff0c;预约上门服务系统在满足用户需求、提升服务效率方面发挥着越来越重要的作用。在本文中&#xff0c;我们将深入研究预约上门服务系统的源码&#xff0c;通过实际的技术代码示例&#xff0c;揭示系统内部的关键机制&#xff0c;以及如何在实际项目中应…...

『RabbitMQ』入门指南(安装,配置,应用)

前言 RabbitMQ 是在 AMQP&#xff08;Advanced Message Queuing Protocol&#xff09; 协议标准基础上完整的&#xff0c;可复用的企业消息系统。它遵循 Mozilla Public License 开源协议&#xff0c;采用 Erlang 实现的工业级的消息队列(MQ)服务器&#xff0c;建立在 Erlang …...

2311skia,01渲染架构

一,渲染层级 从渲染流程上分,Skia可分为如下三个层级: 1,指令层:SkPicture,SkDeferredCanvas->SkCanvas 这一层决定要绘图的操作,绘图操作的预变换矩阵,当前裁剪区域,在哪些层上绘图,层的生成与合并. 2,解析层:SkBitmapDevice->SkDraw->SkScan,SkDraw1Glyph::Proc 这…...

天线的负载

在电磁学和通信工程领域&#xff0c;天线的负载&#xff08;Load&#xff09;通常指连接到天线的部分或元件&#xff0c;该部分在电学上对天线的输入产生影响。天线的负载可以是被连接到天线的阻抗元件、电感、电容、电阻或其他电性元件。 具体而言&#xff0c;天线的负载是指…...

Java学习路径:入门学习、深入学习、核心技术,操作案例和实际代码示例

学习路径&#xff1a;入门学习、深入学习、核心技术&#xff0c; 每个主题都包括很多的操作案例和实际代码示例。 a. 入门学习&#xff1a; 1. 基础语法&#xff1a; 变量和数据类型&#xff1a; // 定义和初始化变量 int age 25;// 不同数据类型的声明 double price 19.99…...

Python武器库开发-前端篇之CSS元素(三十二)

前端篇之CSS元素(三十二) CSS 元素是一个网页中的 HTML 元素&#xff0c;包括标签、类和 ID。它们可以通过 CSS 选择器选中并设置样式属性&#xff0c;以使网页呈现具有吸引力和良好的可读性。常见的 HTML 元素包括 div、p、h1、h2、span 等&#xff0c;它们可以使用 CSS 设置…...

作为Java初学者,如何快速学好Java?

作为Java初学者&#xff0c;如何快速学好Java&#xff1f; 开始的一些话 对于初学者来说&#xff0c;编程的学习曲线可能相对陡峭。这是正常现象&#xff0c;不要感到沮丧。逐步学习&#xff0c;循序渐进。 编程是一门实践性的技能&#xff0c;多写代码是提高的唯一途径。尽量…...

LuatOS-SOC接口文档(air780E)--pwm - PWM模块

pwm.open(channel, period, pulse, pnum, precision) 开启指定的PWM通道 参数 传入值类型 解释 int PWM通道 int 频率, 1-1000000hz int 占空比 0-分频精度 int 输出周期 0为持续输出, 1为单次输出, 其他为指定脉冲数输出 int 分频精度, 100/256/1000, 默认为100,…...

基于51单片机的人体追踪可控的电风扇系统

**单片机设计介绍&#xff0c; 基于51单片机超声波测距汽车避障系统 文章目录 一 概要概述硬件组成工作原理优势应用场景总结 二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 # 基于51单片机的人体追踪可控的电风扇系统介绍 概述 该系统是基于51…...

使用数据集对SegFormer模型进行微调以改进自动驾驶车辆的车道检测-附源码下载

SegFormer:细分严重影响了高级驾驶辅助系统的开发。它在自动驾驶汽车技术的快速发展中发挥了关键作用。它由多个复杂的组件组成。对于任何在道路上行驶的车辆来说,车道检测至关重要。车道是道路上的标记,有助于区分道路上的可行驶区域和不可行驶区域。当前一代有多种车道检测…...

【微服务专题】SpringBoot自动配置简单源码解析

目录 前言阅读对象阅读导航前置知识什么是自动配置0.1 基本概念0.2 SpringBoot中的【约定大于配置】0.3 从SpringMVC看【约定大于配置】0.4 从Redis看【约定大于配置】0.5 小结 笔记正文一、EnableAutoConfiguration源码解析二、SpringBoot常用条件注解源码解析2.1 自定义条件注…...

分布式数据恢复-hbase+hive分布式存储误删除如何恢复数据?

hbasehive分布式存储数据恢复环境&#xff1a; 16台某品牌R730XD服务器节点&#xff0c;每台物理服务器节点上有数台虚拟机&#xff0c;虚拟机上配置的分布式&#xff0c;上层部署hbase数据库hive数据仓库。 hbasehive分布式存储故障&初检&#xff1a; 数据库文件被误删除…...

安卓系统修图软件(一)

平时我们会不时在朋友圈发自己的自拍照&#xff0c;或者是风景图等&#xff0c;许多小伙伴们此时会对照片进行一定的修理&#xff0c;比如添加滤镜等操作。在电脑上用ps修图比较繁琐&#xff0c;日常中大可不必用这把宰牛刀&#xff1b;而手机自带的编辑器&#xff0c;或者是QQ…...

截图转HTML代码,支持预览,前端不用浪费时间写html和css了

截图转代码 试用地址&#xff1a;https://picoapps.xyz/free-tools/screenshot-to-code 这个简单的应用可以将截图转换为HTML/Tailwind CSS代码。它使用GPT-4 Vision来生成代码&#xff0c;并使用DALL-E 3来生成类似的图像。现在你也可以输入一个URL来克隆一个现有的网站&#…...

Vite CSS Module 优雅的处理样式隔离

今天介绍的是我写的一个vite插件vite-plugin-oneof-css-module&#xff0c;该插件主要处理scss module&#xff0c;那它适用于什么场景呢&#xff1f; 1. 最大的特点就是使用scss module 可以不用写 .module.scss 了 2. 可以根据不同的文件夹或文件分别进行不同的处理&#x…...

基于Springboot+Vue选课系统

选课系统要求 (1)数据库表&#xff1a;教师信息表、学生信息表、课程表、选课表 其中&#xff0c;教师信息表、学生信息表和选课表的数据需要提前设置&#xff0c;本题主要操作课程表 (2) 技术架构&#xff1a; 后台使用springboot 前端使用vue-admin-template (3) 考试时间&…...

智能汽车十大网络安全攻击场景-《智能汽车网络安全权威指南》

引言 大家都很熟悉OWASP Top 10风险报告&#xff0c;这个报告不但总结了Web应用程序最可能、最常见、最危险的10大安全隐患&#xff0c;还包括了如何消除这些隐患的建议&#xff0c;这个“OWASP Top 10“差不多每隔三年更新一次。目前汽车网络安全攻击威胁隐患繁多&#xff0c…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...