当前位置: 首页 > news >正文

Leetcode算法系列| 1. 两数之和(四种解法)

目录

  • 1.题目
  • 2.题解
    • 解法一:暴力枚举
    • 解法二:哈希表解法
    • 解法三:双指针(有序状态)
    • 解法四:二分查找(有序状态)

1.题目

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。你可以按任意顺序返回答案。

  • 示例1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1]
  • 示例 2:
输入:nums = [3,2,4], target = 6
输出:[1,2]
  • 示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]
  • 提示:
2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
只会存在一个有效答案

2.题解

解法一:暴力枚举

最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。
当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。

    public int[] TwoSum(int[] nums, int target){int n=nums.Length;for (int i = 0; i < n; i++){for (int j = i + 1; j < n; j++){if (nums[i] + nums[j] == target){return new int[] { i, j };}}}return new int[] { 0, 0 };}

1

  • 时间复杂度: O(n^2) ,空间复杂度: O(1)

解法二:哈希表解法

注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。
使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N) 降低到 O(1)。
这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。

   public int[] TwoSum(int[] nums, int target) {Dictionary<int, int> twoSum = new Dictionary<int, int>();for (int i = 0; i < nums.Length; i++){if(twoSum.ContainsKey(target-nums[i])){return new int[] {twoSum[target - nums[i]], i};}else    {twoSum[nums[i]] = i;}}return new int[] {0, 0};}

2

  • 时间复杂度:O(n),空间复杂度:O(n)。

解法三:双指针(有序状态)

    public int[] towSum(int[] nums, int target){int left = 0;int right = nums.Length - 1;for (int i = 0; i < nums.Length; i++){if (nums[left] + nums[right] > target){right--;}else if (nums[left] + nums[right] < target){left++;}else{return new int[] { left, right };}}return new int[] { };}
  • 时间复杂度:O(nlogn),空间复杂度:O(n)。

解法四:二分查找(有序状态)

 public int[] towSum(int[] nums, int target){for (int i = 0; i < nums.Length; i++){int low = i + 1;int high = nums.Length - 1;while (low <= high){int mid = (high - low) / 2 + low;if (nums[mid] > target - nums[i]){high = mid - 1;}else if (nums[mid] < target - nums[i]){low = mid + 1;}else{return new int[] { i, mid };}}}return new int[] { };}
  • 时间复杂度:O(nlogn),空间复杂度:O(n)。

相关文章:

Leetcode算法系列| 1. 两数之和(四种解法)

目录 1.题目2.题解解法一&#xff1a;暴力枚举解法二&#xff1a;哈希表解法解法三&#xff1a;双指针(有序状态)解法四&#xff1a;二分查找(有序状态) 1.题目 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数…...

汇编-pop出栈指令

32位汇编 执行动作分为两步&#xff1a; 第一步&#xff1a;读出数据 第二步&#xff1a;改变栈地址 如果操作数是16位&#xff0c; 则ESP加2&#xff1b; 如果操作数是32位&#xff0c; 则ESP加4 espesp2 或 espesp4 格式&#xff1a;...

【代码】基于VMD(变分模态分解)-SSA(麻雀搜索算法优化)-LSTM的光伏功率预测模型(完美复现)matlab代码

程序名称&#xff1a;基于VMD&#xff08;变分模态分解&#xff09;-SSA&#xff08;麻雀搜索算法优化&#xff09;-LSTM的光伏功率预测模型 实现平台&#xff1a;matlab 代码简介&#xff1a;提出了变分模态分解(VMD)和麻雀搜索算法(SSA)与长短期记忆神经网络 (LSTM)相耦合,…...

【UnLua】在 Lua 中定义 UE 反射类型

【UnLua】在 Lua 中定义 UE 反射类型 用法 启动编辑器时遍历 Defines 目录下 lua 脚本来加载 UE 反射类型&#xff08;开个临时的 Lua VM 即可&#xff09;直接像 -- define a uenum in lua UEnum.EEnumGuestSomethingElse {Value1 1;Value2 2; }-- use it like a native …...

react的开发中关于图片的知识

React是一个流行的JavaScript库&#xff0c;用于构建用户界面。在React开发中&#xff0c;图片是一个非常重要的元素&#xff0c;可以用于美化界面和展示内容。本篇博客将详细讲解React中关于图片的知识。 1. React中使用图片 在React中使用图片非常简单&#xff0c;只需要使…...

AcWing 188:武士风度的牛 ← BFS

【题目来源】https://www.acwing.com/problem/content/190/ 【题目描述】 农民 John 有很多牛&#xff0c;他想交易其中一头被 Don 称为 The Knight 的牛。 这头牛有一个独一无二的超能力&#xff0c;在农场里像 Knight 一样地跳&#xff08;就是我们熟悉的象棋中马的走法&…...

马养殖场建设VR模拟实训教学平台具有灵活性和复用性

为保障养殖场生物安全&#xff0c;避免疫病传播&#xff0c;学生出入养殖场受时间和地域的限制&#xff0c; 生产实习多以参观为主&#xff0c;通过畜牧企业技术人员的讲解&#xff0c;学生被动了解生产过程。为了解决畜牧养殖实训难的问题&#xff0c;借助VR技术开展畜牧养殖虚…...

云原生技术演进之路-(云技术如何一步步演进的,云原生解决了什么问题?)

云技术如何一步步演进的&#xff1f; 云原生解决了什么问题&#xff1f; 物理设备 电脑刚被发明的时候&#xff0c;还没有网络&#xff0c;每个电脑&#xff08;PC&#xff09;&#xff0c;就是一个单机。 这台单机&#xff0c;包括CPU、内存、硬盘、显卡等硬件。用户在单机…...

基于OGG实现Oracle实时同步MySQL

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…...

〖大前端 - 基础入门三大核心之JS篇㊷〗- DOM事件对象及它的属性

说明&#xff1a;该文属于 大前端全栈架构白宝书专栏&#xff0c;目前阶段免费&#xff0c;如需要项目实战或者是体系化资源&#xff0c;文末名片加V&#xff01;作者&#xff1a;不渴望力量的哈士奇(哈哥)&#xff0c;十余年工作经验, 从事过全栈研发、产品经理等工作&#xf…...

如何搭建zerotier服务器组网实现内网穿透

小白花了四天的下班时间终于把zerotier网络调通&#xff0c;此刻坐在桌前舒畅地喝口茶&#xff5e;&#xff5e; 下面来详细记录下这几天踩的坑&#xff1a; 起因就在于一直在iPad上用向日葵连接公司电脑的我觉得向日葵的界面用的实在难受&#xff0c;vs code操作十分不灵光&…...

【C++】构造函数和析构函数第四部分(深拷贝和浅拷贝)--- 2023.11.25

目录 什么是浅拷贝&#xff1f;浅拷贝的问题使用深拷贝解决浅拷贝问题结束语 什么是浅拷贝&#xff1f; 如果在一个类中没有人为定义拷贝函数&#xff0c;则系统会提供默认拷贝函数。那么在此默认拷贝函数中主要进行了简单的赋值操作&#xff0c;那这个简单的赋值操作我们一般…...

加速软件开发:自动化测试在持续集成中的重要作用!

持续集成的自动化测试 如今互联网软件的开发、测试和发布&#xff0c;已经形成了一套非常标准的流程&#xff0c;最重要的组成部分就是持续集成&#xff08;Continuous integration&#xff0c;简称CI&#xff0c;目前主要的持续集成系统是Jenkins&#xff09;。 那么什么是持…...

工具及方法 - 查找排名:国内网络作家排名

中国十大网络小说作家排名&#xff0c;在买购网的排名&#xff1a; 中国十大网络小说作家 网络小说作家排行榜 中国著名网络写手排名→MAIGOO生活榜 &#xff08;这个网站里还有很多其他的排名。&#xff09; 1&#xff0c;唐家三少 2&#xff0c;辰东 3&#xff0c;我吃西红…...

MySQL INSERT插入条件判断:如果不存在则插入

MySQL INSERT插入条件判断&#xff1a;如果不存在则插入&#xff08;转&#xff09; 我们经常需要进行sql的批量插入&#xff0c;要求&#xff1a;该条记录不存在则插入&#xff0c;存在则不插入。如果使用一条INSERT语句实现呢&#xff1f; ####普通的 INSERT INTO 插入&…...

CSM32RV003:国产高精度16位ADC低功耗RISC-V内核MCU

目录 高精度ADC工业应用工业数据采集应用CSM32RV003简介主要特性 高精度ADC工业应用 高精度ADC即高精度模数转换器&#xff0c;是一种能够将输入模拟信号转换为数字信号的芯片&#xff0c;在多种消费电子、工业、医疗和科研领域都有广泛应用。高精度ADC的主要特点是能够提供高…...

65道常问前端面试题总结react

面试题总结 一.Axios的实现原理 Axios 是一个基于 Promise 的 HTTP 客户端库&#xff0c;用于浏览器和 Node.js 环境。它可以发送 HTTP 请求并处理响应数据。下面是 Axios 实现的基本原理&#xff1a; 封装请求&#xff1a;Axios 提供了一个简单易用的 API&#xff0c;使得开…...

单片机学习1——点亮一个LED灯

Keil软件编写程序&#xff1a; 特殊功能寄存器声明&#xff1a; #include<reg52.h>sbit LED P1^0;void main() {LED 0;while(1); } 代码说明&#xff1a; sbit 语句是特殊功能位声明。 生成HEX文件&#xff0c;这个文件是下载到单片机里的文件。Options for Target…...

PyCharm 配置sqlite3驱动下载问题

单击View -> Tool Windows -> Database&#xff0c;打开Database窗体&#xff0c;之后进行配置&#xff0c;下载驱动包失败&#xff01; 解决 &#xff08;1&#xff09;下载Sqlite3驱动 下载地址: Central Repository: org/xerial/sqlite-jdbc 选择的版本是3.34.0,下载…...

NVMe-oF E-JBOF设计解析:WD RapidFlex网卡、OpenFlex Data24

OpenFlex Data24 NVMe-oF Storage Platform WD的SN840 NVMeSSD新品并没有太吸引我注意&#xff0c;因为它还是PCIe 3.0接口的&#xff0c;要知道Intel的PCIe 4.0 SSD都已经推出了。 但上面这个NVMe-oF&#xff08;NVMe over Fabric&#xff09;EBOF&#xff08;区别于普通JBO…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

第八部分:阶段项目 6:构建 React 前端应用

现在&#xff0c;是时候将你学到的 React 基础知识付诸实践&#xff0c;构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段&#xff0c;你可以先使用模拟数据&#xff0c;或者如果你的后端 API&#xff08;阶段项目 5&#xff09;已经搭建好&#xff0c;可以直接连…...

Docker、Wsl 打包迁移环境

电脑需要开启wsl2 可以使用wsl -v 查看当前的版本 wsl -v WSL 版本&#xff1a; 2.2.4.0 内核版本&#xff1a; 5.15.153.1-2 WSLg 版本&#xff1a; 1.0.61 MSRDC 版本&#xff1a; 1.2.5326 Direct3D 版本&#xff1a; 1.611.1-81528511 DXCore 版本&#xff1a; 10.0.2609…...

持续交付的进化:从DevOps到AI驱动的IT新动能

文章目录 一、持续交付的本质&#xff1a;从手动到自动的交付飞跃关键特性案例&#xff1a;电商平台的高效部署 二、持续交付的演进&#xff1a;从CI到AI驱动的未来发展历程 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/101f72defaf3493ba0ba376bf09367a2.png)中国…...