《使用Python将Excel数据批量写入MongoDB数据库》
在数据分析及处理过程中,我们经常需要将数据写入数据库。而MongoDB作为一种NoSQL数据库,其具有强大的可扩展性、高性能以及支持复杂查询等特性,广泛用于大规模数据存储和分析。在这篇文章中,我们将使用Python编写一个将Excel数据批量写入MongoDB的脚本,以便更加高效地管理数据。
首先,我们需要先安装必要的依赖包,即pandas和pymongo。在安装完毕后,我们可以使用如下代码连接到MongoDB数据库:
import pandas as pd
from pymongo import MongoClient, UpdateOne# 连接到MongoDB数据库
client = MongoClient('mongodb://localhost:27017/')
db = client['pms']
collection = db['hospital']
在连接到数据库之后,我们需要读取Excel文件,并对数据进行初步的处理。在这里,我们使用pandas库来读取Excel数据,然后使用一些函数对数据进行清洗和转换:

# 读取Excel文件
excel_file = 'D:/下载/各省数据 - 副本/20230407北京各事业部用户客户数据汇总.xls'
df = (pd.read_excel(excel_file, skiprows=4, sheet_name='101').iloc[0:-3] # 删除倒数3行.iloc[:, 2:] # 删除前俩列.drop(columns=['备注']) # 删除最后1列.fillna({'护士': 0}) # 用指定的值填充缺失值.ffill() # 填充空值.assign( # 拆分序列医院名称=lambda x: x['医院名称'].str.split("\n"),科室=lambda x: x['科室'].ffill().apply(int), # 转换类型床位=lambda x: x['床位'].ffill().apply(int), # 转换类型)
)
其中,我们使用了一些pandas的函数,如fillna、ffill、drop、assign等来对数据进行处理。处理完成后,我们将数据转换为列表形式,并使用一个字典来将数据按照医院进行分组:
data_list = df.values.tolist()
hospitals = {}
for result in data_list:hospital_name = result[0][0]if hospital_name not in hospitals:hospitals[hospital_name] = {'hospital': result[0][0],'department': result[1],'bed': result[2],'doctor': [result[3]],'nurse': [result[4]],}else:if result[3] not in hospitals[hospital_name]['doctor']:hospitals[hospital_name]['doctor'].append(result[3])if result[4] != 0 and result[4] not in hospitals[hospital_name]['nurse']:hospitals[hospital_name]['nurse'].append(result[4])
在生成字典之后,我们需要将数据批量写入MongoDB数据库中。这里使用了pymongo库的bulk_write函数,它能够高效地批量添加、修改和删除数据:
# 批量添加或更新数据
operations = []
for data in hospitals.values():operations.append(UpdateOne({'hospital': data['hospital']}, {'$set': data}, upsert=True))
result = collection.bulk_write(operations)
print(f'添加或更新数据完毕,共执行 {result.modified_count + result.upserted_count} 项操作。')
最后,我们可以通过运行这些代码来将Excel数据批量写入MongoDB数据库。这种方法极大地提高了数据管理的效率,使我们能够更好地处理数据,更好地进行数据分析。
综上所述,本篇文章介绍了一个简单的Python脚本,可将Excel数据批量写入MongoDB数据库。这个方法不仅高效,而且易于操作,非常适合处理大规模数据。
相关文章:
《使用Python将Excel数据批量写入MongoDB数据库》
在数据分析及处理过程中,我们经常需要将数据写入数据库。而MongoDB作为一种NoSQL数据库,其具有强大的可扩展性、高性能以及支持复杂查询等特性,广泛用于大规模数据存储和分析。在这篇文章中,我们将使用Python编写一个将Excel数据批…...
leetcode_828_统计子串中的唯一字符
题意:所有子串中单个字符出现的次数和 问题转化:对于串中的每个字符,只包含其一次的所有子串的个数和 关于求只包含某位置字符一次的子串个数 class Solution { public:int uniqueLetterString(string s) {/* ...A...A...A...*/int n s.size…...
「Java开发中文指南」IntelliJ IDEA插件安装(一)
IntelliJ IDEA是java编程语言开发的集成环境。IntelliJ在业界被公认为最好的Java开发工具,尤其在智能代码助手、代码自动提示、重构、JavaEE支持、各类版本工具(git、svn等)、JUnit、CVS整合、代码分析、 创新的GUI设计等方面的功能是非常强大的。 插件扩展了Intel…...
单机多卡训练
参考几个不错的帖子(还没来得及整理): 基于pytorch多GPU单机多卡训练实践_多卡训练效果不如单卡-CSDN博客 关于PyTorch单机多卡训练_能用torch.device()实现多卡训练吗-CSDN博客 Pytorch多机多卡分布式训练 - 知乎 (zhihu.com) 当代研究生…...
数据库基础教程之数据库的创建(一)
双击打开Navicat,点击:文件-》新建连接-》PostgreSQL 在下图新建连接中输入各参数,然后点击:连接测试,连接成功后再点击确定。 点击新建数据库 数据库设置如下:...
Python教程:DataFrame列数据类型的转换
Pandas提供了多种数据类型转换方法。可以使用astype()函数来转换数据类型。例如,可以将字符串类型的列转换为整数类型的列: # Author : 小红牛 # 微信公众号:wdPython import pandas as pd# 创建包含字符串类型列的DataFrame df pd.DataFra…...
4-Python与设计模式--抽象工厂模式
4-Python与设计模式–抽象工厂模式 一、快餐点餐系统 想必大家一定见过类似于麦当劳自助点餐台一类的点餐系统吧。在一个大的触摸显示屏上, 有三类可以选择的上餐品: 汉堡等主餐、小食、饮料。当我们选择好自己需要的食物,支付完成后&#…...
STM32 默认时钟更改 +debug调试
STM32时钟 文章目录 STM32时钟前言一、修改系统时钟二、DEBUG 前言 为什么我们要改STM32的时钟呢,打个比方在做SPI驱动的时候,需要16M的时钟,但是stm32默认是72的分频分不出来,这个时候我们就要改系统时钟了,那么怎么…...
转成String类型的几种方式
文章目录 1. String.valueOf()2. 包装类-toString()3. 使用字符串拼接4. 强制类型转换 (String) object5. 总结:6. 基本数据类型和包装类 1. String.valueOf() String.valueOf():基本数据类型或包装类都可以通过 String.valueOf() 方法转为字符串表示形…...
Android BSP 开发之六
1.设定Android settings中某个xml文件(包括其子项)或者某个Preference不被搜索到 设定某个xml文件(包括子项)不被搜索到 找到该xml文件对应的fragment java文件中的SEARCH_INDEX_DATA_PROVIDER,在该provider中对isPageSearchEnabled方法进行重写并…...
mybatis的使用,mybatis的实现原理,mybatis的优缺点,MyBatis缓存,MyBatis运行的原理,MyBatis的编写方式
文章目录 MyBatis简介结构图Mybatis缓存(一级缓存、二级缓存)MyBatis是什么?mybatis的实现原理JDBC编程有哪些不足之处,MyBatis是如何解决这些问题的?Mybatis优缺点优点缺点映射关系 MyBatis的解析和运行原理MyBatis的…...
Effective Modern C++(1.顶层const与底层const)
1.顶层const与底层const的定义 const修饰的变量不可以改变,那么他就是顶层const,如: const int a 10; 那么,对于 const int *const p new int(10); 第二个const就是顶层const,因为他修饰的是p;第一个…...
mmsegmentation学习笔记
mmsegmentation教程 下载预训练权重 github–>mmsegmentation–>model zoo–>XXX model(如:PSPNet)–>找到预选连权重与config的前缀一致:pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 (model) 了解配置文件 查看…...
RabbitMQ简易安装
一般来说安装 RabbitMQ 之前要安装 Erlang ,可以去Erlang官网下载。接着去RabbitMQ官网下载安装包,之后解压缩即可。 Erlang官方下载地址:Downloads - Erlang/OTP RabbitMQ官方下载地址:Downloading and Installing RabbitMQ —…...
Mac M1 安装Docker打包arm64的python项目的镜像包
1、首先安装Docker,到官网下载,选择apple chip版 Docker中文网 官网 2、双击下载的dmg文件,在弹出框中之间拖拽到右边 3、打开docker,修改国内镜像源,位置在配置-DockerEngine "registry-mirrors": ["…...
『OPEN3D』1.8 点云的配准理论
点云的配准是将不同的3D点云对齐成一个完成的点云模型;配准的目标是找到两帧点云之间的相对旋转(rotation)与平移(translation),使得两份点云中有重叠的区域能够完好拼接。 点云配准示例图(来自…...
Python数据结构
目录 5.1. 列表详解 5.1.1. 用列表实现堆栈 5.1.2. 用列表实现队列 5.1.3. 列表推导式 5.1.4. 嵌套的列表推导式 5.2. del 语句 5.3. 元组和序列 5.4. 集合 5.5. 字典 5.6. 循环的技巧 5.7. 深入条件控制 5.8. 序列和其他类型的比较 本章深入讲解之前学过的一些内容…...
突发!新华三总裁《致全体员工的一封信》,中高层全面降薪10%-20%!
* 你好,我是前端队长,在职场,玩副业,文末有福利! 精彩回顾:进了央企,拿了户口,却感觉被困住了。 11月23号,某社交平台爆出了新华三总裁于英涛的《致全体员工的一封信》&a…...
QIIME 2介绍
QIIME 2(Quantitative Insights Into Microbial Ecology 2)是一个用于分析和解释微生物组数据的开源生物信息学工具。它是QIIME的第二个版本,经过重新设计以提高灵活性、可扩展性和可重复性。 1. 关于QIIME 2的一些重要特征和概念࿱…...
Spring Cloud Gateway 的简单介绍和基本使用
前言 本文主要对Spring Cloud Gateway进行简单的概念介绍,并通过多模块编程的方式进行一个简单的实操。 文章目录 前言1 什么是网关(概念)2 微服务中的网关2.1 问题12.2 问题2 3 网关作用4 Spring Cloud Gateway组成5 Spring Cloud Gateway基…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
