当前位置: 首页 > news >正文

【JavaEE】多线程 (2) --线程安全

目录

1. 观察线程不安全

2. 线程安全的概念

3. 线程不安全的原因

4. 解决之前的线程不安全问题

5. synchronized 关键字 - 监视器锁 monitor lock

5.1 synchronized 的特性

5.2 synchronized 使⽤⽰例


1. 观察线程不安全

package thread;
public class ThreadDemo19 {private static int count = 0;public static void main(String[] args) throws InterruptedException {//创建两个线程,每个线程都针对上面的count变量循环自增5w次Thread t1 = new Thread(()-> {for(int i = 0; i<50000; i++) {count++;}});Thread t2 = new Thread(()-> {for(int i = 0; i<50000; i++) {count++;}});t1.start();t2.start();t1.join();t2.join();System.out.println(count);}
}

执行上面的代码,我们发现结果并不是100000, 并且多次运行, 每次的结果都有所不同: 

这就是线程不安全的一个例子. 

2. 线程安全的概念

想给出⼀个线程安全的确切定义是复杂的,但我们可以这样认为:

如果多线程环境下代码运⾏的结果是符合我们预期的,即在单线程环境应该的结果,则说这个程序是线程安全的。

3. 线程不安全的原因

线程调度是随机的

  •  这是线程安全问题的罪魁祸⾸
  • 随机调度使⼀个程序在多线程环境下, 执⾏顺序存在很多的变数.
  • 程序猿必须保证在任意执⾏顺序下 , 代码都能正常⼯作.

修改共享数据

多个线程修改同⼀个变量

上⾯的线程不安全的代码中, 涉及到多个线程针对 count 变量进⾏修改. 此时这个 count 是⼀个多个线程都能访问到的 "共享数据"

原⼦性

什么是原⼦性

我们把⼀段代码想象成⼀个房间,每个线程就是要进⼊这个房间的⼈。如果没有任何机制保证,A进⼊ 房间之后,还没有出来;B 是不是也可以进⼊房间,打断 A 在房间⾥的隐私。这个就是不具备原⼦性的。

那我们应该如何解决这个问题呢?是不是只要给房间加⼀把锁,A 进去就把⻔锁上,其他⼈是不是就进不来了。这样就保证了这段代码的原⼦性了。 有时也把这个现象叫做同步互斥,表⽰操作是互相排斥的。

⼀条 java 语句不⼀定是原⼦的,也不⼀定只是⼀条指令

⽐如刚才我们看到的 count++,其实是由三步操作组成的:

1. 从内存把数据读到 CPU

2. 进⾏数据更新

3. 把数据写回到 CPU

 不保证原⼦性会给多线程带来什么问题

如果⼀个线程正在对⼀个变量操作,中途其他线程插⼊进来了,如果这个操作被打断了,结果就可能是错误的。

这点也和线程的抢占式调度密切相关. 如果线程不是 "抢占" 的, 就算没有原⼦性, 也问题不⼤.

可⻅性

可⻅性指, ⼀个线程对共享变量值的修改,能够及时地被其他线程看到

4. 解决之前的线程不安全问题

使用 synchronized 关键字将一条指令的多个操作, 打包成一个原子的操作.

下面是使用 synchronized 来解决上面代码的问题:

如果两个线程, 针对不同的对象加锁, 也会存在线程安全问题.

如果一个线程加锁, 一个线程不加锁, 是否会存在线程安全问题?

针对加锁操作的一些混淆理解

把count 放到一个Test t对象中, 通过类方法add 来进行修改, 加锁的时候锁对象写作 this

package thread;
class Test {public int count = 0;public void add() {synchronized (this) {count++;}}
}
public class ThreadDemo20 {public static void main(String[] args) throws InterruptedException {Test t = new Test();Thread t1 = new Thread(()->{for (int i = 0; i < 50000; i++) {t.add();}});Thread t2 = new Thread(()->{for (int i = 0; i < 50000; i++) {t.add();}});t1.start();t2.start();t1.join();t2.join();System.out.println("count = " + t.count);}
}

也可以使用类对象: 

5. synchronized 关键字 - 监视器锁 monitor lock

5.1 synchronized 的特性

1) 互斥

synchronized 会起到互斥效果, 某个线程执⾏到某个对象的 synchronized 中时, 其他线程如果也执⾏ 到同⼀个对象 synchronized 就会阻塞等待

  • 进⼊ synchronized 修饰的代码块, 相当于 加锁
  • 退出 synchronized 修饰的代码块, 相当于 解锁

synchronized⽤的锁是存在Java对象头⾥的。

可以粗略理解成, 每个对象在内存中存储的时候, 都存有⼀块内存表⽰当前的 "锁定" 状态(类似于厕所 的 "有⼈/⽆⼈").

如果当前是 "⽆⼈" 状态, 那么就可以使⽤, 使⽤时需要设为 "有⼈" 状态.

如果当前是 "有⼈" 状态, 那么其他⼈⽆法使⽤, 只能排队

理解 "阻塞等待". 

针对每⼀把锁, 操作系统内部都维护了⼀个等待队列. 当这个锁被某个线程占有的时候, 其他线程尝试 进⾏加锁, 就加不上了, 就会阻塞等待, ⼀直等到之前的线程解锁之后, 由操作系统唤醒⼀个新的线程, 再来获取到这个锁.

注意:

  • 上⼀个线程解锁之后, 下⼀个线程并不是⽴即就能获取到锁. ⽽是要靠操作系统来 "唤醒". 这也就 是操作系统线程调度的⼀部分⼯作.
  • 假设有 A B C 三个线程, 线程 A 先获取到锁, 然后 B 尝试获取锁, 然后 C 再尝试获取锁, 此时 B 和 C 都在阻塞队列中排队等待. 但是当 A 释放锁之后, 虽然 B ⽐ C 先来的, 但是 B 不⼀定就能获取到锁, ⽽是和 C 重新竞争, 并不遵守先来后到的规则.

2) 可重⼊

synchronized 同步块对同⼀条线程来说是可重⼊的,不会出现⾃⼰把⾃⼰锁死的问题;

理解 "把⾃⼰锁死"

⼀个线程没有释放锁, 然后⼜尝试再次加锁.

// 第⼀次加锁, 加锁成功

lock();

// 第⼆次加锁, 锁已经被占⽤, 阻塞等待.

lock();

按照之前对于锁的设定, 第⼆次加锁的时候, 就会阻塞等待. 直到第⼀次的锁被释放, 才能获取到第⼆ 个锁. 但是释放第⼀个锁也是由该线程来完成, 结果这个线程已经躺平了, 啥都不想⼲了, 也就⽆法进 ⾏解锁操作. 这时候就会 死锁

这样的锁称为 不可重⼊锁.

Java 中的 synchronized 是可重⼊锁, 因此没有上⾯的问题.

5.2 synchronized 使⽤⽰例

synchronized 本质上要修改指定对象的 "对象头". 从使⽤⻆度来看, synchronized 也势必要搭配⼀个 具体的对象来使⽤.

1) 修饰代码块: 明确指定锁哪个对象.

锁任意对象

public class SynchronizedDemo {private Object locker = new Object();public void method() {synchronized (locker) {}}
}

锁当前对象

public class SynchronizedDemo {public void method() {synchronized (this) {}}
}

2) 直接修饰普通⽅法: 锁的 SynchronizedDemo 对象

public class SynchronizedDemo {public synchronized void methond() {}
}

3) 修饰静态⽅法: 锁的 SynchronizedDemo 类的对象

public class SynchronizedDemo {public synchronized static void method() {}
}

我们重点要理解,synchronized 锁的是什么. 两个线程竞争同⼀把锁, 才会产⽣阻塞等待.

两个线程分别尝试获取两把不同的锁, 不会产⽣竞争

相关文章:

【JavaEE】多线程 (2) --线程安全

目录 1. 观察线程不安全 2. 线程安全的概念 3. 线程不安全的原因 4. 解决之前的线程不安全问题 5. synchronized 关键字 - 监视器锁 monitor lock 5.1 synchronized 的特性 5.2 synchronized 使⽤⽰例 1. 观察线程不安全 package thread; public class ThreadDemo19 {p…...

关于点胶机那些事

总结一下点胶机技术要点&#xff1a; 1&#xff1a;不论多复杂的点胶机&#xff0c;简单点&#xff0c;可以简化为&#xff1a;1&#xff1a;运控 2&#xff1a;点胶&#xff0c;3&#xff1a;检测 运控的目的就是负责把针头移到面板对应的胶路上&#xff0c;点胶即就是排胶&…...

Python | CAP - 累积精度曲线分析案例

CAP通常被称为“累积精度曲线”&#xff0c;用于分类模型的性能评估。它有助于我们理解和总结分类模型的鲁棒性。为了直观地显示这一点&#xff0c;我们在图中绘制了三条不同的曲线&#xff1a; 一个随机的曲线&#xff08;random&#xff09;通过使用随机森林分类器获得的曲线…...

ubuntu22.04安装swagboot遇到的问题

一、基本情况 系统&#xff1a;u 22.04 python&#xff1a; 3.10 二、问题描述 swagboot官方提供的安装路径言简意赅:python3 -m pip install --user snagboot 当然安装python3和pip是基本常识&#xff0c;这里就不再赘述。 可是在安装的时候出现如下提示说 Failed buildin…...

python每日一题——8无重复字符的最长子串

题目 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”&#xff0c;所以其长度为 3。 示例 2: 输入: s “bbbbb” 输出: 1 解释: 因为无重复字符的最长子串…...

【数据中台】开源项目(2)-Dbus数据总线

1 背景 企业中大量业务数据保存在各个业务系统数据库中&#xff0c;过去通常的同步数据的方法有很多种&#xff0c;比如&#xff1a; 各个数据使用方在业务低峰期各种抽取所需数据&#xff08;缺点是存在重复抽取而且数据不一致&#xff09; 由统一的数仓平台通过sqoop到各个…...

职场快速赢得信任

俗话说的好&#xff0c;有人的地方就有江湖。 国内不管是外企、私企、国企&#xff0c;职场环境都是变换莫测。 这里主要分享下怎么在职场中快速赢取信任。 1、找到让自己全面发展的方法 要知道&#xff0c;职场中话题是与他人交流的纽带&#xff0c;为了找到共同的话题&am…...

【SpringBoot3+Vue3】五【完】【实战篇】-前端(配合后端)

目录 一、环境准备 1、创建Vue工程 2、安装依赖 2.1 安装项目所需要的vue依赖 2.2 安装element-plus依赖 2.2.1 安装 2.2.2 项目导入element-plus 2.3 安装axios依赖 2.4 安装sass依赖 3、目录调整 3.1 删除部分默认目录下文件 3.1.1 src/components下自动生成的…...

[LaTex]arXiv投稿攻略——jpg/png转pdf

一、将图片复制进ppt&#xff0c;右键单击图片选择设置图片格式&#xff0c;获取图片高度和宽度 二、选择“设计-幻灯片大小-自定义幻灯片大小” 三、设置幻灯片大小为图片大小 四、 选择“最大化” 五、 检查幻灯片大小是否与图像大小一致 六、导出为PDF...

使用Pytorch从零开始构建GRU

门控循环单元 (GRU) 是 LSTM 的更新版本。让我们揭开这个网络的面纱并探索这两个兄弟姐妹之间的差异。 您听说过 GRU 吗&#xff1f;门控循环单元&#xff08;GRU&#xff09;是更流行的长短期记忆&#xff08;LSTM&#xff09;网络的弟弟&#xff0c;也是循环神经网络&#x…...

【尚跑】2023宝鸡马拉松安全完赛,顺利PB达成

1、赛事背景 千年宝地&#xff0c;一马当先&#xff01;10月15日7时30分&#xff0c;吉利银河2023宝鸡马拉松在宝鸡市行政中心广场鸣枪开跑。 不可忽视的是&#xff0c;这次赛事的卓越之处不仅在于规模和参与人数&#xff0c;还在于其精心的策划和细致入微的组织。为了确保每位…...

Mac nginx安装,通过源码安装教程

第一部分 安装参考网址&#xff1a; https://blog.csdn.net/a1004084857/article/details/128512612&#xff1b; 以上步骤执行完&#xff0c;进入找到sbin目录&#xff0c;查看下面是不是有nginx可执行文件&#xff0c;如果有在当前sbin下执行./nginx,就会发现NGINX已启动 第…...

TypeScript中的枚举是什么?

在TypeScript中&#xff0c;枚举&#xff08;Enum&#xff09;是一种用于定义一组有命名的常量值的数据类型。它们可以提供更具可读性和可维护性的代码。 枚举的作用是为一组相关的值提供一个易于理解和使用的命名空间。它们可以用于代表一系列可能的选项、状态或标志&#xf…...

进程并发-信号量经典例题-面包师问题

1 题目描述 面包师有很多面包和蛋糕&#xff0c;由N个销售人员销售。每个顾客进店后先取一个号&#xff0c;并且等着叫号。当一个销售人员空闲下来&#xff0c;就叫下一个号。试用信号量的P、V操作设计该问题的同步算法&#xff0c;给出所用共享变量&#xff08;如果需要&…...

c语言练习12周(11~15)

编写double fun(int a[],int n)函数&#xff0c;计算返回评分数组a中&#xff0c;n个评委打分&#xff0c;去掉一个最高分去掉一个最低分之后的平均分 题干编写double fun(int a[],int n)函数&#xff0c;计算返回评分数组a中&#xff0c;n个评委打分&#xff0c;去掉一…...

Java 实现视频转音频功能

在实际开发中,我们经常需要处理各种多媒体文件。本文将介绍如何使用 Java 语言实现将视频文件转换为音频文件的功能。我们将使用 FFmpeg 工具来进行视频转换操作,并通过 Java 的 ProcessBuilder 实现调用系统命令执行 FFmpeg 的功能。 准备工作 首先,我们需要确保系统中已安…...

可以在Playgrounds或Xcode Command Line Tool开始学习Swift

一、用Playgrounds 1. App Store搜索并安装Swift Playgrounds 2. 打开Playgrounds&#xff0c;点击 文件-新建图书。然后就可以编程了&#xff0c;如下&#xff1a; 二、用Xcode 1. 安装Xcode 2. 打开Xcode&#xff0c;选择Creat New Project 3. 选择macOS 4. 选择Comman…...

IDC最新报告,增速减缓+AI增势,阿里云视频云中国市场第一

国际权威数据公司IDC发布 《中国视频云市场跟踪&#xff08;2023 H1&#xff09;》报告 自2018年至今&#xff0c;阿里云持续保持 中国视频云整体市场第一 整体市场占比达24.4% 01 第一之外&#xff0c;低谷之上 近期&#xff0c;国际权威数据公司IDC最新发布了《中国视频…...

常见状态码

欢迎大家到我的博客浏览。常见状态码 | YinKais Blog 常见状态码<!--more--> 1、200 200&#xff1a;服务器已经接收了请求&#xff0c;但处理还没有完成。 204&#xff1a;服务器已经成功处理了请求&#xff0c;但相应中没有任何返回内容。比如 DELETE 请求。 206&…...

Spring原理——基于xml配置文件创建IOC容器的过程

Spring框架的核心之一是IOC&#xff0c;那么我们是怎么创建出来的Bean呢&#xff1f; 作者进行了简单的总结&#xff0c;希望能对你有所帮助。 IOC的创建并不是通过new而是利用了java的反射机制&#xff0c;利用了newInstance方法进行的创建对象。 首先&#xff0c;我们先定义…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...