自己动手实现一个深度学习算法——八、深度学习
深度学习是加深了层的深度神经网络。
1.加深网络
1)向更深的网络出发
创建一个如下图所示的网络结构的CNN

这个网络的层比之前实现的网络都更深。这里使用的卷积层全都是3×3 的小型滤波器,特点是随着层的加深,通道数变大(卷积层的通道数从前面的层开始按顺序以16、16、32、32、64、64的方式增加)。
这个网络有如下特点。
• 基于 3×3 的小型滤波器的卷积层。
• 激活函数是 ReLU。
• 全连接层的后面使用 Dropout 层。
• 基于 Adam 的最优化。
• 使用 He 初始值作为权重初始值。
网络类的实现,deep_convnet类
# coding: utf-8
import sys, os
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
import pickle
import numpy as np
from collections import OrderedDict
from common.layers import *class DeepConvNet:"""识别率为99%以上的高精度的ConvNet网络结构如下所示conv - relu - conv- relu - pool -conv - relu - conv- relu - pool -conv - relu - conv- relu - pool -affine - relu - dropout - affine - dropout - softmax"""def __init__(self, input_dim=(1, 28, 28),conv_param_1 = {'filter_num':16, 'filter_size':3, 'pad':1, 'stride':1},conv_param_2 = {'filter_num':16, 'filter_size':3, 'pad':1, 'stride':1},conv_param_3 = {'filter_num':32, 'filter_size':3, 'pad':1, 'stride':1},conv_param_4 = {'filter_num':32, 'filter_size':3, 'pad':2, 'stride':1},conv_param_5 = {'filter_num':64, 'filter_size':3, 'pad':1, 'stride':1},conv_param_6 = {'filter_num':64, 'filter_size':3, 'pad':1, 'stride':1},hidden_size=50, output_size=10):# 初始化权重===========# 各层的神经元平均与前一层的几个神经元有连接(TODO:自动计算)pre_node_nums = np.array([1*3*3, 16*3*3, 16*3*3, 32*3*3, 32*3*3, 64*3*3, 64*4*4, hidden_size])wight_init_scales = np.sqrt(2.0 / pre_node_nums) # 使用ReLU的情况下推荐的初始值self.params = {}pre_channel_num = input_dim[0]for idx, conv_param in enumerate([conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]):self.params['W' + str(idx+1)] = wight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size'])self.params['b' + str(idx+1)] = np.zeros(conv_param['filter_num'])pre_channel_num = conv_param['filter_num']self.params['W7'] = wight_init_scales[6] * np.random.randn(64*4*4, hidden_size)self.params['b7'] = np.zeros(hidden_size)self.params['W8'] = wight_init_scales[7] * np.random.randn(hidden_size, output_size)self.params['b8'] = np.zeros(output_size)# 生成层===========self.layers = []self.layers.append(Convolution(self.params['W1'], self.params['b1'], conv_param_1['stride'], conv_param_1['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W2'], self.params['b2'], conv_param_2['stride'], conv_param_2['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Convolution(self.params['W3'], self.params['b3'], conv_param_3['stride'], conv_param_3['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W4'], self.params['b4'],conv_param_4['stride'], conv_param_4['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Convolution(self.params['W5'], self.params['b5'],conv_param_5['stride'], conv_param_5['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W6'], self.params['b6'],conv_param_6['stride'], conv_param_6['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Affine(self.params['W7'], self.params['b7']))self.layers.append(Relu())self.layers.append(Dropout(0.5))self.layers.append(Affine(self.params['W8'], self.params['b8']))self.layers.append(Dropout(0.5))self.last_layer = SoftmaxWithLoss()def predict(self, x, train_flg=False):for layer in self.layers:if isinstance(layer, Dropout):x = layer.forward(x, train_flg)else:x = layer.forward(x)return xdef loss(self, x, t):y = self.predict(x, train_flg=True)return self.last_layer.forward(y, t)def accuracy(self, x, t, batch_size=100):if t.ndim != 1 : t = np.argmax(t, axis=1)acc = 0.0for i in range(int(x.shape[0] / batch_size)):tx = x[i*batch_size:(i+1)*batch_size]tt = t[i*batch_size:(i+1)*batch_size]y = self.predict(tx, train_flg=False)y = np.argmax(y, axis=1)acc += np.sum(y == tt)return acc / x.shape[0]def gradient(self, x, t):# forwardself.loss(x, t)# backwarddout = 1dout = self.last_layer.backward(dout)tmp_layers = self.layers.copy()tmp_layers.reverse()for layer in tmp_layers:dout = layer.backward(dout)# 设定grads = {}for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):grads['W' + str(i+1)] = self.layers[layer_idx].dWgrads['b' + str(i+1)] = self.layers[layer_idx].dbreturn gradsdef save_params(self, file_name="params.pkl"):params = {}for key, val in self.params.items():params[key] = valwith open(file_name, 'wb') as f:pickle.dump(params, f)def load_params(self, file_name="params.pkl"):with open(file_name, 'rb') as f:params = pickle.load(f)for key, val in params.items():self.params[key] = valfor i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):self.layers[layer_idx].W = self.params['W' + str(i+1)]self.layers[layer_idx].b = self.params['b' + str(i+1)]
训练类train_deepnet的实现
# coding: utf-8
import sys, os
sys.path.append(os.pardir) # 为了导入父目录而进行的设定
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from deep_convnet import DeepConvNet
from common.trainer import Trainer(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)network = DeepConvNet()
trainer = Trainer(network, x_train, t_train, x_test, t_test,epochs=20, mini_batch_size=100,optimizer='Adam', optimizer_param={'lr':0.001},evaluate_sample_num_per_epoch=1000)
trainer.train()# 保存参数
network.save_params("deep_convnet_params.pkl")
print("Saved Network Parameters!")
权重参数保存在deep_conv_net_params.pkl
2)进一步提高识别精度
集成学习、学习率衰减、Data Augmentation(数据扩充)等都有助于提高识别精度。
Data Augmentation 基于算法“人为地”扩充输入图像(训练图像)。对于输入图像,通过施加旋转、垂直或水平方向上的移动等微小变化,增加图像的数量。这在数据集的图像数量有限时尤其有效。
3)加深层的动机
关于加深层的重要性,现状是理论研究还不够透彻。
层越深,识别性能也越高。
加深层一个好处就是可以减少网络的参数数量。加深层的另一个好处就是使学习更加高效。
通过加深层,可以将各层要学习的问题分解成容易解决的简单问题,从而可以进行高效的学习。
2.深度学习的小历史
现在深度学习之所以受到大量关注,其契机是2012年举办的大规模图像识别大赛ILSVRC(ImageNet Large Scale Visual Recognition Challenge)。在那年的比赛中,基于深度学习的方法(通称 AlexNet)以压倒性的优势胜出,彻底颠覆了以往的图像识别方法。
1)ImageNet
是拥有超过100万张图像的数据集。它包含了各种各样的图像,并且每张图像都被关联了标签(类别名)。每年都会举办使用这个巨大数据集的ILSVRC图像识别大赛。
2)VGG
VGG 是由卷积层和池化层构成的基础的 CNN。它的特点在于将有权重的层(卷积层或者全连接层)叠加至16层(或者19层),具备了深度(根据层的深度,有时也称为“VGG16”或“VGG19”)。
3)GoogLeNet
GoogLeNet的特征是,网络不仅在纵向上有深度,在横向上也有深度(广度)。
GoogLeNet 在横向上有“宽度”,这称为“Inception 结构”,Inception结构使用了多个大小不同的滤波器(和池化),最后再合并它们的结果。
4)ResNet
它的特征在于具有比以前的网络更深的结构。我们已经知道加深层对于提升性能很重要。但是,在深度学习中,过度加深层的话,很多情况下学习将不能顺利进行,导致最终性能不佳。
3.深度学习的高速化
大多数深度学习的框架都支持GPU(Graphics Processing Unit),可以高速地处理大量的运算。
最近的框架也开始支持多个GPU或多台机器上的分布式学习。
1)需要努力解决的问题
AlexNex中,大多数时间都被耗费在卷积层上。如何高速、高效地进行卷积层中的运算是深度学习的一大课题。
2)基于GPU的高速化
GPU 原本是作为图像专用的显卡使用的,但最近不仅用于图像处理,也用于通用的数值计算。
由于GPU 可以高速地进行并行数值计算,因此GPU 计算的目标就是将这种压倒性的计算能力用于各种用途。所谓 GPU 计算,是指基于GPU进行通用的数值计算的操作。
深度学习中需要进行大量的乘积累加运算(或者大型矩阵的乘积运算)。这种大量的并行运算正是GPU所擅长的(反过来说,CPU比较擅长连续的、复杂的计算)。因此,与使用单个CPU相比,使用GPU进行深度学习的运算可以达到惊人的高速化。
3)分布式学习
为了进一步提高深度学习所需的计算的速度,可以考虑在多个GPU或者多台机器上进行分布式计算。现在的深度学习框架中,出现了好几个支持多GPU或者多机器的分布式学习的框架。
其中,Google的TensorFlow、微软的CNTK(Computational Network Toolki)在开发过程中高度重视分布式学习。以大型数据中心的低延迟·高吞吐网络作为支撑,基于这些框架的分布式学习呈现出惊人的效果。
“如何进行分布式计算”是一个非常难的课题。它包含了机器间的通信、数据的同步等多个无法轻易解决的问题。
4)运算精度的位数缩减
在深度学习的高速化中,除了计算量之外,内存容量、总线带宽等也有可能成为瓶颈。关于内存容量,需要考虑将大量的权重参数或中间数据放在内存中。关于总线带宽,当流经GPU(或者CPU)总线的数据超过某个限制时,就会成为瓶颈。考虑到这些情况,我们希望尽可能减少流经网络的数据的位数。
4.深度学习的应用案例
深度学习并不局限于物体识别,还可以应用于各种各样的问题。此外,在图像、语音、自然语言等各个不同的领域,深度学习都展现了优异的性能。
1)物体检测
物体检测是从图像中确定物体的位置,并进行分类的问题。
物体检测是比物体识别更难的问题。之前介绍的物体识别是以整个图像为对象的,但是物体检测需要从图像中确定类别的位置,而且还有可能存在多个物体。
对于这样的物体检测问题,人们提出了多个基于CNN的方法。这些方法展示了非常优异的性能,并且证明了在物体检测的问题上,深度学习是非常有效的。
在使用CNN进行物体检测的方法中,有一个叫作R-CNN的有名的方法。首先(以某种方法)找出形似物体的区域,然后对提取出的区域应用CNN进行分类。R-CNN 中会将图像变形为正方形,或者在分类时使用 SVM(支持向量机),实际的处理流会稍微复杂一些,不过从宏观上看,也是由刚才的两个处理(候选区域的提取和CNN特征的计算)构成的。
2)图像分割
图像分割是指在像素水平上对图像进行分类。使用以像素为单位对各个对象分别着色的监督数据进行学习。然后,在推理时,对输入图像的所有像素进行分类。
要基于神经网络进行图像分割,最简单的方法是以所有像素为对象,对每个像素执行推理处理。比如,准备一个对某个矩形区域中心的像素进行分类的网络,以所有像素为对象执行推理处理。正如大家能想到的,这样的方法需要按照像素数量进行相应次forward处理,因而需要耗费大量的时间(正确地说,卷积运算中会发生重复计算很多区域的无意义的计算)。为了解决这个无意义的计算问题,有人提出了一个名为FCN的方法。该方法通过一次forward处理,对所有像素进行分类
FCN 的字面意思是 “全部由卷积层构成的网络”。相对于一般的 CNN 包含全连接层,FCN将全连接层替换成发挥相同作用的卷积层。
FCN的特征在于最后导入了扩大空间大小的处理。
3)图像标题的生成
一个基于深度学习生成图像标题的代表性方法是被称为 NIC(Neural Image Caption)的模型。
RNN是呈递归式连接的网络,经常被用于自然语言、时间序列数据等连续性的数据上。
我们将组合图像和自然语言等多种信息进行的处理称为多模态处理。多模态处理是近年来备受关注的一个领域。
5.深度学习的未来
1)图像风格变换
两个输入图像中,一个称为“内容图像”,另一个称为“风格图像”。
2)图像的生成
现在有一种研究是生成新的图像时不需要任何图像(虽然需要事先使用大量的图像进行学习,但在“画”新图像时不需要任何图像)。
3)自动驾驶
4)Deep Q-Network(强化学习)
就像人类通过摸索试验来学习一样(比如骑自行车),让计算机也在摸索试验的过程中自主学习,这称为强化学习(reinforcement learning)。强化学习和有“教师”在身边教的“监督学习”有所不同。
强化学习的基本框架是,代理(Agent)根据环境选择行动,然后通过这个行动改变环境。根据环境的变化,代理获得某种报酬。强化学习的目的是决定代理的行动方针,以获得更好的报酬
相关文章:
自己动手实现一个深度学习算法——八、深度学习
深度学习是加深了层的深度神经网络。 1.加深网络 1)向更深的网络出发 创建一个如下图所示的网络结构的CNN 这个网络的层比之前实现的网络都更深。这里使用的卷积层全都是33 的小型滤波器,特点是随着层的加深,通道数变大(卷积…...
js闭包的必要条件及创建和消失(生命周期)
>创建闭包的必要条件: 1.函数嵌套 2.内部函数引用外部函数的变量 3.将内部函数作为返回值返回 >闭包是什么? 就是可以访问外部函数(作用域)中变量的内部函数 > 闭包是什么时候产生的? - 当调用外部函数…...
鸿蒙开发-ArkTS 语言-基础语法
[写在前面: 文章多处用到gif动图,如未自动播放,请点击图片] 1. 初识 ArkTS 语言 ArkTS 是 HarmonyOS 优选主力开发语言。ArkTS 是基于 TypeScript (TS) 扩展的一门语言,继承了 TS 的所有特性,是TS的超集。 主要是扩展了以下几个方…...
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF 文章目录 GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHFPretraining 预训练阶段Supervised FineTuning (SFT&#x…...
电子学会C/C++编程等级考试2022年03月(三级)真题解析
C/C++等级考试(1~8级)全部真题・点这里 第1题:和数 给定一个正整数序列,判断其中有多少个数,等于数列中其他两个数的和。 比如,对于数列1 2 3 4, 这个问题的答案就是2, 因为3 = 2 + 1, 4 = 1 + 3。 时间限制:10000 内存限制:65536输入 共两行,第一行是数列中数的个数…...
理解 JUnit, JaCoCo 到 SonarQube 的过程及 Maven 配置
Java 项目需要产生单元测试及代码覆盖率的话一直都是走的 JUnit 单元测试,JaCoCo 基于测试产生测试覆盖率,然后送到 SonarQube 去展示这条路子。当然 SonarQube 还可以帮我们进行代码的静态分析。但对其中的具体使用及过程知晓的并不深,基本就…...
人工智能关键技术决定机器人产业的前途
人工智能(Artificial Intelligence,AI)是指让计算机或机器具有类似于人类的智能和学习能力的技术。人工智能技术与机器人技术的结合将改变传统的机器人行业格局,就像智能手机对传统手机的颠覆一样。本文从人工智能技术的发展趋势、…...
2023华为ICT网络初赛试题回顾
所有题目都只能用来学习交流,禁止用于非法不公平的使用,如有侵权,该文章立刻删除。 1、某机房没有合适长度的网线,现需手工制作一个568B标准的双纹线,那么应按照以下哪一线序进行制作? A.绿白,绿,蓝&#…...
Hands-on Machine Learning with Scikit-Learn,Keras TensorFlow
读书记录(缓慢更新) 目录 Part 1. The Fundamentals of Machine Learning The Content of The Machine Learning Landscape The Machine Learning Landscape Part 1. The Fundamentals of Machine Learning The Content of The Machine Learning Landscape Part 1. The F…...
242. 有效的字母异位词
这篇文章会收录到 :算法通关村第十二关-白银挑战字符串经典题目-CSDN博客 242. 有效的字母异位词 描述 : 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。 注意:若 s 和 t 中每个字符出现的次数都相同,则称 s 和 t …...
TUP通信——与多个客户端同时通信
一,概括:可以通过多线程思想每加一个客户端由线程池中的主线程交给一个子线程管理 二,案例 (1),线程池 (2),服务端 (3),客户端...
基于helm的方式在k8s集群中部署gitlab - 备份恢复(二)
接上一篇 基于helm的方式在k8s集群中部署gitlab - 部署(一),本篇重点介绍在k8s集群中备份gitlab的数据,并在虚拟机上部署相同版本的gitlab,然后将备份的数据进行还原恢复 文章目录 1. 备份2. 恢复到虚拟机上的gitlab2.…...
B树与B+树的对比
B树: m阶B树的核心特性: 树中每个节点至多有m棵子树,即至多含有m-1个关键字根节点的子树数属于[2, m],关键字数属于[1, m-1],其他节点的子树数属于 [ ⌈ m 2 ⌉ , m ] [\lceil \frac{m}{2}\rceil, m] [⌈2m⌉,m]&am…...
关键路径-STL版/拓扑排序 关键路径【数据结构】
关键路径-STL版 题目描述 给定有向图无环的边信息,求每个顶点的最早开始时间、最迟开始时间。 输入 第一行图的顶点总数 第二行边的总数 第三行开始,每条边的时间长度,格式为源结点 目的结点 长度 输出 第一行:第个顶点的最早…...
最新AI创作系统ChatGPT系统运营源码,支持GPT-4图片对话能力,上传图片并识图理解对话,支持DALL-E3文生图
一、AI创作系统 SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图文教程吧!本系统使用NestjsVueTypescript框架技术,持续集成AI能力到本系统。支持OpenAI DALL-E3文生图,…...
小航助学题库蓝桥杯题库stem选拔赛(21年3月)(含题库教师学生账号)
需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统(含题库答题软件账号)_程序猿下山的博客-CSDN博客 需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统(含题库答题软件账号)_程序猿下山的博客-CSD…...
[python]离线加载fetch_20newsgroups数据集
首先手动下载这个数据包 http://qwone.com/~jason/20Newsgroups/20news-bydate.tar.gz 下载这个文件后和脚本放一起就行,然后 打开twenty_newsgroups.py文件(在fetch_20newsgroups函数名上,右键转到定义即可找到) 之后运行代码即…...
Python与设计模式--代理模式
5-Python与设计模式–代理模式 一、网络服务器配置白名单 代理模式是一种使用频率非常高的模式,在多个著名的开源软件和当前多个著名的互联网产品后 台程序中都有所应用。下面我们用一个抽象化的简单例子,来说明代理模式。首先,构造一个网…...
ubuntu挂载磁盘,以及开机自动挂载磁盘
1. 挂载临时磁盘(关机自动取消挂载) 在Ubuntu上挂载磁盘涉及到几个步骤,其中包括查看可用磁盘、创建挂载点、编辑 /etc/fstab 文件以确保在系统启动时自动挂载等。以下是一般的步骤: **查看可用磁盘和分区:**可以使用…...
Jetpack Compose中适应性布局的新API
Jetpack Compose中适应性布局的新API 针对大屏幕优化的新组合件。 使用新的Material适应性布局,为手机、可折叠设备和平板电脑构建应用程序变得更加简单!市场上各种不同尺寸的Android设备的存在挑战了构建应用程序时对屏幕尺寸的通常假设。开发者不应该…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...
倒装芯片凸点成型工艺
UBM(Under Bump Metallization)与Bump(焊球)形成工艺流程。我们可以将整张流程图分为三大阶段来理解: 🔧 一、UBM(Under Bump Metallization)工艺流程(黄色区域ÿ…...
