当前位置: 首页 > news >正文

蓝桥杯-动态规划-子数组问题

目录

一、乘积最大数组

二、乘积为正数的最长子数组长度

三、等差数列划分

四、最长湍流子数组


心得:

最重要的还是状态表示,我们需要根据题的意思,来分析出不同的题,不同的情况,来分析需要多少个状态

一、乘积最大数组

乘积最大数组

1.状态表示

dp[i]:到达i位置的最大乘积子数组。

2.状态转移方程

dp[i]=Math.max(dp[i-1]*p[i],dp[i-1]);

问题:不能通过简单的最大值来填表,因为他的这个存在负负得正的情况,但是他其实一共乘法分为两种情况

正*正为正 最大值

正*负为负 最小值

负*负为正 最大值

状态表示更改为

f[i]:到达i位置,最大的乘积

g[i]:到达i位置,最小的乘积

所以状态转移方程也需要去变

 f[i]=Math.max(nums[i],Math.max(f[i-1]*nums[i],g[i-1]*nums[i]));
 g[i]=Math.min(nums[i],Math.min(f[i-1]*nums[i],g[i-1]*nums[i]));

3.初始化

f[0]=g[0]=nums[0]

4.填表顺序

从左到右

5.返回值

class Solution {public int maxProduct(int[] nums) {int m=nums.length;//f为最大乘积和//g为最小乘积和int[]f=new int[m];int[]g=new int[m];f[0]=g[0]=nums[0];for(int i=1;i<m;i++){//f[i]状态表示f[i]=Math.max(nums[i],Math.max(f[i-1]*nums[i],g[i-1]*nums[i]));g[i]=Math.min(nums[i],Math.min(f[i-1]*nums[i],g[i-1]*nums[i]));}
int ret =-0x3f3f3f3f;for(int i=0;i<m;i++){ret=Math.max(ret,f[i]);}return  ret;}
}

二、乘积为正数的最长子数组长度

1.状态表示

dp[i]=到达i位置乘积为正数的最长子数组长度

如果要确保乘积是正数,就需要我们上面那个乘积最大的数组的状态表示

f[i]:以i元素为结尾位置,乘积为正数的长度

g[i]:以i位置为结尾位置,乘积为负数的长度

2.状态转移方程

f[i]分为长度为1的情况和长度不为1的情况

长度为一的情况,还要区分是不是为正数

长度不为一的情况,看当前i是正数还是负数

当nums[i]<0的时候我们要想一件事情,假如说g[i-1]正好等于0,然而此时nums[i]<0,那么没有正数,最后的结果不就是等于0吗。所以我们不能写作当nums[i]<0时候,f[i]=g[i-1]+1

3.初始化:

就单纯的看nums[0]大于0还是小于0。 大于0那么f[0]就是1。小于0那么g[0]是1

4.填表顺序:

从左到右

5返回值:返回值最大值

class Solution {public static int getMaxLen(int[] nums) {int m=nums.length;int f[]=new int[m];int g[]=new int[m];if(nums[0]>0){f[0]=1;}else if(nums[0]<0){g[0]=1;}for(int i=1;i<m;i++){//f[i]状态表示if(nums[i]>0){f[i]=f[i-1]+1;if(g[i-1]==0){g[i]=0;}else{g[i]=g[i-1]+1;}}else if(nums[i]<0){if(g[i-1]==0){f[i]=0 ;}else{f[i]=g[i-1]+1;}g[i]=f[i-1]+1;}}int ret=0;for(int i=0;i<m;i++){ret=Math.max(ret,f[i]);}return ret;}}

三、等差数列划分

1.状态表示

dp[i]到达i位置等差数列的个数

2.状态表示

如果nums[i]-nums[i-1]==nums[i-1]-nums[i-2],那么他就构成了一个三个数的等差数组,

如果他之前就是三个数的等差数组,加一个数也就可以组成一个四个数的等差数组

dp[i]=dp[i-1]+1 (多少个数的等差数组)然后假如说由3个变成4个,4-3也就是要加1即可,剩下的那个是在三个里面,换句话说,有上面那个判定条件,它是给你判定三个的,但是假如说你这个是4个,他就不会算在内,所以4个的话就要多加1,五个就要多加一个4个,和一个五个,这样慢慢的规律就是i-2即可(我的意思是假如是五个减去三个)

然后检查三个的是不是一个等差数组

3.初始化:

小于3就是0

4.填表顺序:

从左到右

5.返回值

return dp表中的最大值即可

class Solution {public static int numberOfArithmeticSlices(int[] nums) {int m=nums.length;int[]dp=new int[m];if(m<3){return 0;}int max=0;for(int i=2;i<m;i++){if(nums[i]-nums[i-1]==nums[i-1]-nums[i-2]){dp[i]=dp[i-1]+1;if(i-2>0&&dp[i-1]!=0){dp[i]=dp[i]+i-2;}max=Math.max(dp[i-1],max);if(i-2>0&&dp[i-1]==0){dp[i]=max+1;}max=Math.max(dp[i],max);}}int ret=0;for(int i=0;i<m;i++){ret=Math.max(dp[i],ret);}return ret;}
}

四、最长湍流子数组

湍流数组用图来表示就相当于是

大概就是这种图像的含义。*        *
*       *

1.状态表示

dp[i]:到达i位置的最长湍流数组的长度

2.状态表示

if(n%2==0){

假如nums[i]>nums[i+1]}

else{

nums[i]<nums[i+1]}

dp[i]=dp[i-1]+1

在这里我们发现一件事情,一个数组,他最多只能表示当前的一种情况

但这个地方有三个状态,所以不能说单靠一个表达湍流数组的状态

所以我们决定使用f[i],g[i],来表示,前面两种情况,最后那个是0

f[i]:表示在i位置,与i-1位置呈现下降趋势,最长湍流数组长

g[i]:表示在i位置,与i-1位置呈现上升趋势,最长湍流数组长

那么if(nums[i-1]>nums[i]){

f[i]=g[i-1]+1;

g[i]=1;

}

if(nums[i]<nums[i+1]){

f[i]=1;

g[i]=f[i-1]+1;

}

3.初始化

因为假如只有一个数字,那么湍流数组的长度是1,所以说,这个就默认是1了。

从1到n

4.填表顺序

从左到右

5.返回值

返回最大值

class Solution {public int maxTurbulenceSize(int[] arr) {int m=arr.length;int[]f=new int[m];int[]g=new int[m];for(int i=0;i<m;i++){f[i]=g[i]=1;}for(int i=1;i<m;i++){if(arr[i-1]>arr[i]){f[i]=g[i-1]+1;g[i]=1;}if(arr[i-1]<arr[i]){f[i]=1;g[i]=f[i-1]+1;}}int ret=0;for(int i=0;i<m;i++){ret=Math.max(ret,Math.max(g[i],f[i]));}return ret;}
}

相关文章:

蓝桥杯-动态规划-子数组问题

目录 一、乘积最大数组 二、乘积为正数的最长子数组长度 三、等差数列划分 四、最长湍流子数组 心得&#xff1a; 最重要的还是状态表示&#xff0c;我们需要根据题的意思&#xff0c;来分析出不同的题&#xff0c;不同的情况&#xff0c;来分析需要多少个状态 一、乘积最…...

CDA一级备考思维导图

CDA一级备考思维导图 第一章 数据分析概述与职业操守1、数据分析概念、方法论、角色2、数据分析师职业道德与行为准则3、大数据立法、安全、隐私 CDA一级复习备考资料共计七个章节&#xff0c;如需资料&#xff0c;请留言&#xff0c;概览如下图&#xff1a; 第一章 数据分析…...

【傻瓜级JS-DLL-WINCC-PLC交互】1.C#用windows窗体控件创建.net控件

思路 JS-DLL-WINCC-PLC之间进行交互&#xff0c;思路&#xff0c;先用Visual Studio创建一个C#的DLL控件&#xff0c;然后这个控件里面嵌入浏览器组件&#xff0c;实现JS与DLL通信&#xff0c;然后DLL放入到WINCC里面的图形编辑器中&#xff0c;实现DLL与WINCC的通信。然后PLC与…...

Unity中Shader的BRDF解析(一)

文章目录 前言现在我们主要来看Standard的 漫反射 和 镜面反射一、PBS的核心计算BRDF二、Standard的镜面高光颜色三、具体的BRDF计算对于BRDF的具体计算&#xff0c;在下篇文章中&#xff0c;继续解析 四、最终代码.cginc文件Shader文件 前言 在上篇文章中&#xff0c;我们解析…...

《软件工程原理与实践》复习总结与习题——软件工程概述

软件 什么是软件&#xff1f; 程序数据配套文档 软件危机 概念 计算机软件的开发和维护过程中所遇到的一系列严重问题 表现 20世纪60年代中后期&#xff0c;大容量、高速度计算机的出现&#xff0c;使计算机应用范围增大&#xff0c;软件开发需求急剧增长 软件工程 背景 德国…...

acwing算法基础之动态规划--线性DP和区间DP

目录 1 基础知识2 模板3 工程化 1 基础知识 线性DP&#xff1a;状态转移表达式存在明显的线性关系。 区间DP&#xff1a;与顺序有关&#xff0c;状态与区间有关。 2 模板 3 工程化 题目1&#xff1a;数字三角形。 解题思路&#xff1a;直接DP即可&#xff0c;f[i][j]可以来…...

力扣 622.设计循环队列

目录 1.解题思路2.代码实现 1.解题思路 首先&#xff0c;该题是设计循环队列&#xff0c;因此我们有两种实现方法&#xff0c;即数组和链表&#xff0c;但具体考虑后&#xff0c;发现数组实现要更容易一些&#xff0c;因此使用数组实现&#xff0c;因此我们要给出头和尾变量&a…...

初识Linux(2).妈妈再也不用担心我Linux找不到门了。

文章目录 前言 1.man指令&#xff08;重要&#xff09;&#xff1a;例如&#xff1a; 2.cp指令&#xff08;重要&#xff09;&#xff1a;例如&#xff1a;把123.txt复制到a目录中类似window如下操作&#xff1a; 3.mv例如&#xff1a;类似window如下操作&#xff1a; 4.nano例…...

房屋租赁出售经纪人入驻小程序平台

一款专为房屋中介开发的小程序平台&#xff0c;支持独立部署&#xff0c;源码交付&#xff0c;数据安全无忧。 核心功能&#xff1a;房屋出租、经纪人独立后台、分佣后台、楼盘展示、房型展示、在线咨询、地址位置配套设施展示。 程序已被很多房屋交易中介体验使用过&#x…...

【计算方法与科学建模】矩阵特征值与特征向量的计算(五):乘幂法的加速(带有原点移位的乘幂法)

文章目录 一、Jacobi 旋转法二、Jacobi 过关法三、Householder 方法四、乘幂法四、乘幂法的加速 矩阵的特征值&#xff08;eigenvalue&#xff09;和特征向量&#xff08;eigenvector&#xff09;在很多应用中都具有重要的数学和物理意义。 本文将详细介绍乘幂法的基本原理和步…...

2023年【起重机械指挥】考试题库及起重机械指挥考试资料

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2023年【起重机械指挥】考试题库及起重机械指挥考试资料&#xff0c;包含起重机械指挥考试题库答案和解析及起重机械指挥考试资料练习。安全生产模拟考试一点通结合国家起重机械指挥考试最新大纲及起重机械指挥考试真…...

GoLang语言范围(Range)

目录 一、在数组、切片上使用‘range’ 二、在映射上使用range 三、在通道上使用range Go语言中的range关键字用于迭代数组&#xff08;数组、切片、字符串&#xff09;、映射&#xff08;map&#xff09;、通道&#xff08;channel&#xff09;或者在 for 循环中迭代每一个…...

汽车电子 -- 车载ADAS之FCW(前方碰撞预警)

相关法规文件: FCW: GB∕T 33577-2017 智能运输系统 车辆前向碰撞预警系统 性能要求和测试规程 一、前方碰撞预警 FCW&#xff08; Forward Collision Warning&#xff09; 参看&#xff1a;法规标准-GB/T 33577标准解读(2017版) 1、状态机 系统关闭 当车辆前向碰撞预警系…...

爬虫系统Docker和Kubernetes部署运维最佳实践

在构建和管理爬虫系统时&#xff0c;使用Docker和Kubernetes可以带来诸多好处&#xff0c;如方便的部署、弹性伸缩和高可靠性。然而&#xff0c;正确的部署和运维实践对于确保系统稳定运行至关重要。在本文中&#xff0c;我将分享爬虫系统在Docker和Kubernetes上的最佳部署和运…...

音视频5、libavformat-1

libavformat库,是FFmpeg中用于处理各种媒体容器格式(media container format)的库。它的两个最主要的功能是 : demuxing:解封装,将一个媒体文件分割为多个多媒体流 muxing:封装,将多个多媒体数据流写入到指定媒体容器格式的文件中 这两个过程所做的…...

【数据结构复习之路】树和二叉树(严蔚敏版)万字详解主打基础

专栏&#xff1a;数据结构复习之路 复习完上面四章【线性表】【栈和队列】【串】【数组和广义表】&#xff0c;我们接着复习 树和二叉树&#xff0c;这篇文章我写的非常详细且通俗易懂&#xff0c;看完保证会带给你不一样的收获。如果对你有帮助&#xff0c;看在我这么辛苦整理…...

nginx使用详解:转发规则、负载均衡、server_name

文章目录 一、nginx常用的转发规则location 指令说明location转发使用 二、upstream负载均衡使用三、server_name使用四、其他常用配置限制请求类型处理静态资源目录遍历问题限制客户端使用的ip或者域名 五、需要注意的地方location /api1 探讨location ~ /api1 探讨&#xff0…...

HarmonyOS 数据持久化 Preferences 如何在页面中对数据进行读写

背景介绍 最近在了解并跟着官方文档尝试做一个鸿蒙app 小demo的过程中对在app中保存数据遇到些问题 特此记录下来 这里的数据持久化以 Preferences为例子展开 废话不多说 这里直接上节目(官方提供的文档示例:) 以Stage模型为例 1.明确preferences的类型 import data_prefer…...

ESP32-Web-Server编程- JS 基础 4

ESP32-Web-Server编程- JS 基础 4 概述 HTML 内联事件处理器&#xff0c;你永远不应该使用 HTML 事件处理器属性——因为那些已经过时了&#xff0c;使用它们是不好的做法。 在前端编程中&#xff0c;除了将期望发生的事件写为 JS 文件外&#xff0c;还可以使用一些组件自带…...

JAVA的反射机制

什么是反射机制 Java反射机制是指在运行时动态地获取类的信息并操作类的成员&#xff08;属性、方法、构造方法等&#xff09;的能力。通过反射&#xff0c;我们可以解析出类的完整信息&#xff0c;包括构造函数、成员变量、继承关系等。以下是一个使用反射机制创建对象、调用…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...