当前位置: 首页 > news >正文

【LeetCode】121. 买卖股票的最佳时机

121. 买卖股票的最佳时机

难度:简单

题目

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 10^5
  • 0 <= prices[i] <= 10^4

个人题解

方法一:模拟

思路:遍历数组记录当前最小值,且每次比最小值小时都重置最大值,因为大的值只能在最小值的右边找,比较最大最小值的差值,当大于前面记录的最大差值时才替换当前最大差值,这个最大差值即最后要返回的结果

class Solution {public int maxProfit(int[] prices) {int min = Integer.MAX_VALUE;int max = -1;int result = 0;for (int i = 0; i < prices.length; i++) {if (prices[i] < min) {min = prices[i];max = -1;} else if (prices[i] > max) {max = prices[i];result = Math.max(max - min, result);}}return result;}
}

复杂度分析

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

官方题解:

我们需要找出给定数组中两个数字之间的最大差值(即,最大利润)。此外,第二个数字(卖出价格)必须大于第一个数字(买入价格)。

形式上,对于每组 i 和 j (其中 i > j)我们需要找出 max(prices[j] - prices[i])

方法一:暴力法【超时】

public class Solution {public int maxProfit(int[] prices) {int maxprofit = 0;for (int i = 0; i < prices.length - 1; i++) {for (int j = i + 1; j < prices.length; j++) {int profit = prices[j] - prices[i];if (profit > maxprofit) {maxprofit = profit;}}}return maxprofit;}
}

复杂度分析

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

方法二:一次遍历

public class Solution {public int maxProfit(int prices[]) {int minprice = Integer.MAX_VALUE;int maxprofit = 0;for (int i = 0; i < prices.length; i++) {if (prices[i] < minprice) {minprice = prices[i];} else if (prices[i] - minprice > maxprofit) {maxprofit = prices[i] - minprice;}}return maxprofit;}
}

复杂度分析

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

作者:力扣官方题解
链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/solutions/136684/121-mai-mai-gu-piao-de-zui-jia-shi-ji-by-leetcode-/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关文章:

【LeetCode】121. 买卖股票的最佳时机

121. 买卖股票的最佳时机 难度&#xff1a;简单 题目 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获…...

Vue3-VueRouter4路由语法解析

1.创建路由实例由createRouter实现 2.路由模式 1&#xff09;history模式使用createWebHistory()&#xff1a;地址栏不带# 2&#xff09;hash模式使用createWebHashHistory()&#xff1a;地址栏带# 3&#xff09;参数是基础路径&#xff0c;默认/ 括号里的就是设置路径的前…...

ChromeDriver最新版本下载与安装方法

关于ChromeDriver最新下载地址&#xff1a;https://googlechromelabs.github.io/chrome-for-testing/ 下载与安装 setp1&#xff1a;查看Chrome浏览器版本 首先&#xff0c;需要检查Chrome浏览器的版本。请按照以下步骤进行&#xff1a; 打开Chrome浏览器。 点击浏览器右上角…...

illuminate/database 使用 四

文档&#xff1a;Hyperf Database: Getting Started - Laravel 10.x - The PHP Framework For Web Artisans 因为hyperf使用illuminate/database&#xff0c;所以按照文章&#xff0c;看illuminate/database代码实现。 一、读写分离 根据文档读写的host可以分开。设置读写分…...

Spring面向切面编程(AOP);Spring控制反转(IOC);解释一下Spring AOP里面的几个名词;Spring 的 IoC支持哪些功能

文章目录 Spring面向切面编程(AOP)什么是AOPSpring AOP and AspectJ AOP 的区别&#xff1f;Spring AOP中的动态代理如何理解 Spring 中的代理&#xff1f;解释一下Spring AOP里面的几个名词Spring在运行时通知对象Spring切面可以应用5种类型的通知&#xff1a;什么是切面 Aspe…...

vatee万腾的科技征途:Vatee独特探索的数字化力量

在数字化时代的浪潮中&#xff0c;Vatee万腾以其独特的科技征途成为引领者。公司在数字化领域的探索之路不仅是技术的创新&#xff0c;更是一种对未知的勇敢涉足&#xff0c;是对新时代的深刻洞察和积极实践。 Vatee万腾通过独特的探索&#xff0c;展示了在数字化征途上的创新力…...

MySQL学习day03

一、SQL图形化界面工具 常用比较常用的图形化界面有sqlyog、mavicat、datagrip datagrip工具使用相当方便&#xff0c;功能比前面两种都要强大。 DataGrip工具的安装和使用请查看这篇文档&#xff1a;DataGrip 安装教程 DML-介绍 DML全称是Data Manipulation Language(数据…...

《QT从基础到进阶·三十七》QWidget实现左侧导航栏效果

NavigationBarPlugin插件类实现了对左侧导航栏的管理&#xff0c;我们可以在导航栏插件中添加界面&#xff0c;并用鼠标点击导航栏能够切换对应的界面。 源码在文章末尾 实现效果如下&#xff1a; NavigationBarPlugin实现的接口如下&#xff1a; class NAVIGATIONBAR_EXP…...

sftp学习

什么是sftp&#xff1f; sftp的简单操作 远程连接 int RobostSftp::Init(QString ip,QString port,QString user_name, QString user_password) { int rc;session ssh_new();if (!session) {fprintf(stderr, "ssh initialization failed\n");// return 1…...

C++之STL库:string类(用法列举和总结)

前言 大家在学习STL库的时候一定要学会看英文文档&#xff0c;俗话说熟能生巧&#xff0c;所以还得多练&#xff01;在使用string类之前&#xff0c;要包含头文件#include <string>和using namespace std; 文档链接&#xff1a;string - C Reference 一、string——构造…...

小程序中的大道理--综述

前言 以下将用一个小程序来探讨一些大道理, 这些大道理包括可扩展性, 抽象与封装, 可维护性, 健壮性, 团队合作, 工具的利用, 可测试性, 自顶向下, 分而治之, 分层, 可读性, 模块化, 松耦合, MVC, 领域模型, 甚至对称性, 香农的信息论等等. 为什么不用大程序来说大道理呢? …...

tlais智能学习辅助系统-修改部门功能实现

学习黑马程序员的JavaWeb课程&#xff0c;自己写的部门信息修改部分程序 控制层&#xff1a; //DeptController.java /** * 根据ID查询部门信息 * param id * return */ GetMapping("/{id}") public Result select(PathVariable Integer id){log.info("查询id…...

GLM: 自回归空白填充的多任务预训练语言模型

当前&#xff0c;ChatGLM-6B 在自然语言处理领域日益流行。其卓越的技术特点和强大的语言建模能力使其成为对话语言模型中的佼佼者。让我们深入了解 ChatGLM-6B 的技术特点&#xff0c;探索它在对话模型中的创新之处。 GLM: 自回归空白填充的多任务预训练语言模型 ChatGLM-6B 技…...

函数递归所应满足的条件

1.递归的概念 递归是学习C语⾔函数绕不开的⼀个话题&#xff0c;那什么是递归呢&#xff1f; 递归其实是⼀种解决问题的⽅法&#xff0c;在C语⾔中&#xff0c;递归就是函数⾃⼰调⽤⾃⼰。 递归的思想&#xff1a; 把⼀个⼤型复杂问题层层转化为⼀个与原问题相似&#xff0c;但…...

Python入职某新员工大量使用Lambda表达式,却被老员工喷是屎山

Python中Lambda表达式是一种简洁而强大的特性,其在开发中的使用优缺点明显,需要根据具体场景权衡取舍。 Lambda表达式的优点之一是它的紧凑语法,适用于一些短小而简单的函数。这种形式使得代码更为精炼,特别在一些函数式编程场景中,Lambda表达式可以提高代码的表达力。此外…...

Android Bitmap保存成至手机图片文件,Kotlin

Android Bitmap保存成至手机图片文件&#xff0c;Kotlin fun saveBitmap(name: String?, bm: Bitmap) {val savePath Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_PICTURES).toString()if (!Files.exists(Paths.get(savePath))) {Log.d("保存文…...

frp V0.52.3 搭建

下载 https://github.com/fatedier/frp/releases/ 此版本暂时没有windows的&#xff0c;想在windows使用请下载v0.52.2 简易搭建 frps.toml的配置文件&#xff0c;以下12000、8500需要在云服务器中的防火墙中开放tcp # bindPort为frps和frpc通信的端口&#xff0c;需要在防…...

最近数据分析面试的一点感悟...

我是阿粥&#xff0c;也是小z 最近面了不少应届的同学&#xff08;数据分析岗位&#xff09;&#xff0c;颇有感触&#xff0c;与各位分享。 简历可以润色&#xff0c;但要适度 运用一些原则&#xff0c;如STAR法则&#xff0c;让简历逻辑更清晰&#xff0c;条块分明&#xff0…...

ZYNQ_project:IIC_EEPROM

EEPROM简介&#xff1a; EEPROM(Electrically Erasable Progammable Read Only Memory&#xff0c; E2PROM)是指带电可擦可编程只读存 储器&#xff0c;是一种常用的非易失性存储器&#xff08;掉电数据不丢失&#xff09;&#xff0c; E2PROM 有多种类型的产品&#xff0c;我…...

Leetcode 2940. Find Building Where Alice and Bob Can Meet

Leetcode 2940. Find Building Where Alice and Bob Can Meet 1. 解题思路2. 代码实现3. 算法优化 题目链接&#xff1a;2940. Find Building Where Alice and Bob Can Meet 1. 解题思路 这一题本质上又是限制条件下求极值的问题&#xff0c;算是我最不喜欢的题目类型之一吧…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...

恶补电源:1.电桥

一、元器件的选择 搜索并选择电桥&#xff0c;再multisim中选择FWB&#xff0c;就有各种型号的电桥: 电桥是用来干嘛的呢&#xff1f; 它是一个由四个二极管搭成的“桥梁”形状的电路&#xff0c;用来把交流电&#xff08;AC&#xff09;变成直流电&#xff08;DC&#xff09;。…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...