当前位置: 首页 > news >正文

【LeetCode】121. 买卖股票的最佳时机

121. 买卖股票的最佳时机

难度:简单

题目

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 10^5
  • 0 <= prices[i] <= 10^4

个人题解

方法一:模拟

思路:遍历数组记录当前最小值,且每次比最小值小时都重置最大值,因为大的值只能在最小值的右边找,比较最大最小值的差值,当大于前面记录的最大差值时才替换当前最大差值,这个最大差值即最后要返回的结果

class Solution {public int maxProfit(int[] prices) {int min = Integer.MAX_VALUE;int max = -1;int result = 0;for (int i = 0; i < prices.length; i++) {if (prices[i] < min) {min = prices[i];max = -1;} else if (prices[i] > max) {max = prices[i];result = Math.max(max - min, result);}}return result;}
}

复杂度分析

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

官方题解:

我们需要找出给定数组中两个数字之间的最大差值(即,最大利润)。此外,第二个数字(卖出价格)必须大于第一个数字(买入价格)。

形式上,对于每组 i 和 j (其中 i > j)我们需要找出 max(prices[j] - prices[i])

方法一:暴力法【超时】

public class Solution {public int maxProfit(int[] prices) {int maxprofit = 0;for (int i = 0; i < prices.length - 1; i++) {for (int j = i + 1; j < prices.length; j++) {int profit = prices[j] - prices[i];if (profit > maxprofit) {maxprofit = profit;}}}return maxprofit;}
}

复杂度分析

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

方法二:一次遍历

public class Solution {public int maxProfit(int prices[]) {int minprice = Integer.MAX_VALUE;int maxprofit = 0;for (int i = 0; i < prices.length; i++) {if (prices[i] < minprice) {minprice = prices[i];} else if (prices[i] - minprice > maxprofit) {maxprofit = prices[i] - minprice;}}return maxprofit;}
}

复杂度分析

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

作者:力扣官方题解
链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/solutions/136684/121-mai-mai-gu-piao-de-zui-jia-shi-ji-by-leetcode-/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关文章:

【LeetCode】121. 买卖股票的最佳时机

121. 买卖股票的最佳时机 难度&#xff1a;简单 题目 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获…...

Vue3-VueRouter4路由语法解析

1.创建路由实例由createRouter实现 2.路由模式 1&#xff09;history模式使用createWebHistory()&#xff1a;地址栏不带# 2&#xff09;hash模式使用createWebHashHistory()&#xff1a;地址栏带# 3&#xff09;参数是基础路径&#xff0c;默认/ 括号里的就是设置路径的前…...

ChromeDriver最新版本下载与安装方法

关于ChromeDriver最新下载地址&#xff1a;https://googlechromelabs.github.io/chrome-for-testing/ 下载与安装 setp1&#xff1a;查看Chrome浏览器版本 首先&#xff0c;需要检查Chrome浏览器的版本。请按照以下步骤进行&#xff1a; 打开Chrome浏览器。 点击浏览器右上角…...

illuminate/database 使用 四

文档&#xff1a;Hyperf Database: Getting Started - Laravel 10.x - The PHP Framework For Web Artisans 因为hyperf使用illuminate/database&#xff0c;所以按照文章&#xff0c;看illuminate/database代码实现。 一、读写分离 根据文档读写的host可以分开。设置读写分…...

Spring面向切面编程(AOP);Spring控制反转(IOC);解释一下Spring AOP里面的几个名词;Spring 的 IoC支持哪些功能

文章目录 Spring面向切面编程(AOP)什么是AOPSpring AOP and AspectJ AOP 的区别&#xff1f;Spring AOP中的动态代理如何理解 Spring 中的代理&#xff1f;解释一下Spring AOP里面的几个名词Spring在运行时通知对象Spring切面可以应用5种类型的通知&#xff1a;什么是切面 Aspe…...

vatee万腾的科技征途:Vatee独特探索的数字化力量

在数字化时代的浪潮中&#xff0c;Vatee万腾以其独特的科技征途成为引领者。公司在数字化领域的探索之路不仅是技术的创新&#xff0c;更是一种对未知的勇敢涉足&#xff0c;是对新时代的深刻洞察和积极实践。 Vatee万腾通过独特的探索&#xff0c;展示了在数字化征途上的创新力…...

MySQL学习day03

一、SQL图形化界面工具 常用比较常用的图形化界面有sqlyog、mavicat、datagrip datagrip工具使用相当方便&#xff0c;功能比前面两种都要强大。 DataGrip工具的安装和使用请查看这篇文档&#xff1a;DataGrip 安装教程 DML-介绍 DML全称是Data Manipulation Language(数据…...

《QT从基础到进阶·三十七》QWidget实现左侧导航栏效果

NavigationBarPlugin插件类实现了对左侧导航栏的管理&#xff0c;我们可以在导航栏插件中添加界面&#xff0c;并用鼠标点击导航栏能够切换对应的界面。 源码在文章末尾 实现效果如下&#xff1a; NavigationBarPlugin实现的接口如下&#xff1a; class NAVIGATIONBAR_EXP…...

sftp学习

什么是sftp&#xff1f; sftp的简单操作 远程连接 int RobostSftp::Init(QString ip,QString port,QString user_name, QString user_password) { int rc;session ssh_new();if (!session) {fprintf(stderr, "ssh initialization failed\n");// return 1…...

C++之STL库:string类(用法列举和总结)

前言 大家在学习STL库的时候一定要学会看英文文档&#xff0c;俗话说熟能生巧&#xff0c;所以还得多练&#xff01;在使用string类之前&#xff0c;要包含头文件#include <string>和using namespace std; 文档链接&#xff1a;string - C Reference 一、string——构造…...

小程序中的大道理--综述

前言 以下将用一个小程序来探讨一些大道理, 这些大道理包括可扩展性, 抽象与封装, 可维护性, 健壮性, 团队合作, 工具的利用, 可测试性, 自顶向下, 分而治之, 分层, 可读性, 模块化, 松耦合, MVC, 领域模型, 甚至对称性, 香农的信息论等等. 为什么不用大程序来说大道理呢? …...

tlais智能学习辅助系统-修改部门功能实现

学习黑马程序员的JavaWeb课程&#xff0c;自己写的部门信息修改部分程序 控制层&#xff1a; //DeptController.java /** * 根据ID查询部门信息 * param id * return */ GetMapping("/{id}") public Result select(PathVariable Integer id){log.info("查询id…...

GLM: 自回归空白填充的多任务预训练语言模型

当前&#xff0c;ChatGLM-6B 在自然语言处理领域日益流行。其卓越的技术特点和强大的语言建模能力使其成为对话语言模型中的佼佼者。让我们深入了解 ChatGLM-6B 的技术特点&#xff0c;探索它在对话模型中的创新之处。 GLM: 自回归空白填充的多任务预训练语言模型 ChatGLM-6B 技…...

函数递归所应满足的条件

1.递归的概念 递归是学习C语⾔函数绕不开的⼀个话题&#xff0c;那什么是递归呢&#xff1f; 递归其实是⼀种解决问题的⽅法&#xff0c;在C语⾔中&#xff0c;递归就是函数⾃⼰调⽤⾃⼰。 递归的思想&#xff1a; 把⼀个⼤型复杂问题层层转化为⼀个与原问题相似&#xff0c;但…...

Python入职某新员工大量使用Lambda表达式,却被老员工喷是屎山

Python中Lambda表达式是一种简洁而强大的特性,其在开发中的使用优缺点明显,需要根据具体场景权衡取舍。 Lambda表达式的优点之一是它的紧凑语法,适用于一些短小而简单的函数。这种形式使得代码更为精炼,特别在一些函数式编程场景中,Lambda表达式可以提高代码的表达力。此外…...

Android Bitmap保存成至手机图片文件,Kotlin

Android Bitmap保存成至手机图片文件&#xff0c;Kotlin fun saveBitmap(name: String?, bm: Bitmap) {val savePath Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_PICTURES).toString()if (!Files.exists(Paths.get(savePath))) {Log.d("保存文…...

frp V0.52.3 搭建

下载 https://github.com/fatedier/frp/releases/ 此版本暂时没有windows的&#xff0c;想在windows使用请下载v0.52.2 简易搭建 frps.toml的配置文件&#xff0c;以下12000、8500需要在云服务器中的防火墙中开放tcp # bindPort为frps和frpc通信的端口&#xff0c;需要在防…...

最近数据分析面试的一点感悟...

我是阿粥&#xff0c;也是小z 最近面了不少应届的同学&#xff08;数据分析岗位&#xff09;&#xff0c;颇有感触&#xff0c;与各位分享。 简历可以润色&#xff0c;但要适度 运用一些原则&#xff0c;如STAR法则&#xff0c;让简历逻辑更清晰&#xff0c;条块分明&#xff0…...

ZYNQ_project:IIC_EEPROM

EEPROM简介&#xff1a; EEPROM(Electrically Erasable Progammable Read Only Memory&#xff0c; E2PROM)是指带电可擦可编程只读存 储器&#xff0c;是一种常用的非易失性存储器&#xff08;掉电数据不丢失&#xff09;&#xff0c; E2PROM 有多种类型的产品&#xff0c;我…...

Leetcode 2940. Find Building Where Alice and Bob Can Meet

Leetcode 2940. Find Building Where Alice and Bob Can Meet 1. 解题思路2. 代码实现3. 算法优化 题目链接&#xff1a;2940. Find Building Where Alice and Bob Can Meet 1. 解题思路 这一题本质上又是限制条件下求极值的问题&#xff0c;算是我最不喜欢的题目类型之一吧…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...