当前位置: 首页 > news >正文

OpenCV | 模版匹配

import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB
%matplotlib inline

模版匹配

  • 模版匹配和卷积原理很像,模版在原图像上从原点开始滑动,计算模版与(图像被模版覆盖的地方)的差别层度,这个差别成都的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图案是A×B大小,而模版是a×b大小,则输出结果的矩阵是(A-a+1)×(B-b+1)

 face.jpg

lena.jpg

#模版匹配
img = cv2.imread('lena.jpg',0)
template = cv2.imread('face.jpg',0)
h,w = template.shape[:2]

 查看相关参数:

img.shape
template.shape
  • TM_SQDIFF : 计算平方不同,计算出来的值越小,越相关
  • TM_COORR :计算相关性,计算出来的值越大,越相关
  • TM_CCOEFF : 计算相关系统,计算出来的值越大,越相关
  • TM_SQDIFF_NORMED :计算归一化平方不同,计算出来的值越接近0,越相关
  • TM_CCORR_NORMED: 计算归一化相关性,计算出来的值越接近1,越相关
  • TM_CCOEFF_NORMED : 计算归一化相关系数,计算出来的值越接近1,越相关
methods = ['cv2.TM_CCOEFF','cv2.TM_CCOEFF_NORMED','cv2.TM_CCORR','cv2.TM_CCORR_NORMED','cv2.TM_SQDIFF','cv2.TM_SQDIFF_NORMED']res = cv2.matchTemplate(img,template,cv2.TM_SQDIFF)
res.shapemin_val,max_val,min_loc,max_loc = cv2.minMaxLoc(res)min_valmax_valmin_locmax_loc

 

for meth in methods:img2 = img.copy()#匹配方法的真值method = eval(meth)print (method)res = cv2.matchTemplate(img,template,method)min_val,max_val,min_loc,max_loc = cv2.minMaxLoc(res)#如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0]+w,top_left[1]+h)#画矩形cv2.rectangle(img2,top_left,bottom_right,255,2)plt.subplot(121),plt.imshow(res,cmap='gray')plt.xticks([]),plt.yticks([]) #隐藏坐标轴plt.subplot(122),plt.imshow(img2,cmap = 'gray')plt.xticks([]),plt.yticks([])plt.suptitle(meth)plt.show()

运行出的结果

匹配多个目标对象

 mario_coin.jpg

mario.jpg

img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb,cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg',0)
h,w = template.shape[:2]res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.8
#匹配成都大于%80 的坐标
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]): #*号表示可选参数bottom_right = (pt[0] + w, pt[1] +h)cv2.rectangle(img_rgb,pt,bottom_right,(0,0,255),2)cv2.imshow('img_rgb',img_rgb)
cv2.waitKey(0)

运行结果:

相关文章:

OpenCV | 模版匹配

import cv2 #opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB %matplotlib inline 模版匹配 模版匹配和卷积原理很像,模版在原图像上从原点开始滑动,计算模版与(图像被模版覆盖的地方&#xff…...

【算法刷题】Day7

文章目录 283. 移动零1089. 复写零 283. 移动零 原题链接 看到题目,首先看一下题干的要求,是在原数组内进行操作,平切保持非零元素的相对顺序 这个时候我们看到了示例一: [ 0, 1, 0, 3,12 ] 这个时候输出成为了 [ 1, 3, 12, 0, …...

前端 | iframe框架标签应用

文章目录 📚嵌入方式📚图表加载显示📚100%嵌入及滑动条问题📚加载动画保留 前情提要: 计划用iframe把画好的home1.html(echarts各种图表组成的html数据大屏)嵌入整合到index.html(搭…...

linux -系统通用命令查询

有时候内网环境下,系统有些命令没有安装因此掌握一些通用的linux 命令也可以帮助我们解决一些问题查看 1.查看系统内核版本 uname -r2.查看系统版本 cat /etc/os-release3. 查看cpu 配置 lscpu4.查看内存信息 free [参数] 中各个数值的解释如下表 数值解释t…...

python炒股自动化(1),量化交易接口区别

要实现股票量化程序化自动化,就需要券商提供的API接口,重点是个人账户小散户可以申请开通,上手要简单,接口要足够全面,功能完善,首先,第一步就是要找对渠道和方法,这里我们不讨论量化…...

LeetCode(35)螺旋矩阵【矩阵】【中等】

目录 1.题目2.答案3.提交结果截图 链接: 54. 螺旋矩阵 1.题目 给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。 示例 1: 输入:matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&#xff1a…...

BeanUtil.copyProperties的优化与使用(解决copyProperties null值覆盖问题)

BeanUtil.copyProperties的优化与使用 前言一、copyProperties是什么?二、使用步骤1.引入库2.基础使用3.进阶使用4.实用场景 总结 前言 BeanUtil.copyProperties的优化与使用 一、copyProperties是什么? 在java中,我们想要将一个类的值赋值…...

Redis基本操作及使用

📑前言 本文主要是【Redis】——Redis基本操作及使用的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 🌄每日一…...

python 继承父类的变量和方法

[root@zz python]# cat a1.py # !/usr/bin/env python # -*- coding: utf-8 -*- class AddrBookEntry(object): ##类定义 def __init__(self,a,b): ##定义构造器 self.var1=a+9 self.var2=b+11 def updatePhone(self, num): # 定义方法 sel…...

ubuntu22.04新机使用(换源,下载软件,安装显卡驱动,锁屏长亮)

换源 国内有很多Ubuntu的镜像源,包括阿里的、网易的,还有很多教育网的源,比如:清华源、中科大源。推荐使用中科大源,快得很。 /etc/apt/sources.list编辑/etc/apt/sources.list文件, 在文件最前面添加以下条目(操作前…...

如何给shopify的网址做301跳转

很多shopify的运营者或者推广者由于缺货或者货物变更,又或者自己更换了使用的主题,导致自己的URL结构发生了变化,由于不想浪费掉自己原有URL 的流量,就想做个301跳转,让自己新的网址来承接原有的流量。接下来给大家介绍…...

Redis之秒杀系统

目录 Redis 秒杀 Mysql数据库设计 Mysql秒杀实现 MysqlRedis秒杀实现 秒杀是一种高并发场景,通常指的是在短时间内(秒级别)有大量用户同时访问某个商品或服务,争相抢购的情景。在这种情况下,系统需要处理大量并发请…...

c++基础----new

c基础----new 在C中,new是一个运算符,用于动态分配内存并返回指向该内存的指针。它可以用于创建单个对象、数组以及动态分配的对象。 下面是new的几种常见用法: 动态分配单个对象: int* ptr new int; // 动态分配一个int类型…...

Java中的mysql——面试题+答案(存储过程,外键,隔离级别,性能优化)——第23期

当涉及MySQL时,面试题的范围可以涵盖数据库设计、优化、复制、分片等方面。 什么是数据库范式?为什么要遵循数据库范式? 答案: 数据库范式是一组规范,用于设计关系数据库表的结构,以减少数据冗余和提高数据…...

一种新的基于物理的AlGaN/GaN HFET紧凑模型

标题:A new physics-based compact model for AlGaN/GaN HFETs (IEEE MTT-S International Microwave Symposium) 摘要 摘要 - 针对AlGaN/GaN HFET,提出了一种无拟合参数的物理解析模型。对于非饱和操作,建立了两个接入区和栅极下方I-V特性的…...

uniapp基础-教程之HBuilderX基础常识篇02

uniapp创建项目时属性多为vue后缀;其中每个文件中都包含了三段式结构分别是template;script;style形势,分别是前端显示的画面以及js和css样式。 template:说大白话就是给别人看的,我们打开页面就可以看到的…...

如何源码编译seaTunnel

如何源码编译seaTunnel 参考Set Up Develop Environment 编译前准备 下列软件需要提前安装好 GitJava ( JDK8/JDK11) 并设置JAVA_HOME 环境变量Scala (只支持 scala 2.11.12 )JetBrains IDEA . 下载源码并编译 git clone gitgithub.com:apache/seatunnel.git cd seatunne…...

msng病毒分析

这是一个非常古老的文件夹病毒,使用XP系统的文件夹图标,采用VB语言开发,使用了一种自定义的壳来保护,会打开网址http://www.OpenClose.ir,通过软盘、U盘和共享目录进行传播,会在U盘所有的目录下生成自身的副本&#xf…...

Unity安装

DAY1 下载Unity 打开Unity3D官网,下载Unity Hub,管理Unity的软件。链接https://unity.cn/releases (可能需要注册账号,就正常注册登录即可) 如果是新版的hub,可能长下面这个样子,还是英文的,点击圆圈的设…...

【代洋集团特惠好物:80瓦太阳能折叠包】

为您的绿色出行保驾护航!代洋集团倾情推出80瓦太阳能折叠包,为您的户外活动提供清洁、便捷的电力支持。 这款太阳能折叠包采用高效能太阳能板,可折叠设计方便携带,轻松为您解决户外用电问题。80瓦的强大功率,让您在户…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)&#xff0…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

【AI学习】三、AI算法中的向量

在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

GitHub 趋势日报 (2025年06月08日)

📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

Map相关知识

数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...