当前位置: 首页 > news >正文

第三章-OpenCV基础-7-形态学

前置

形态学主要是从图像中提取分量信息,该分量信息通常是图像理解时所使用的最本质的形状特征,对于表达和描绘图像的形状有重要意义。

大体就是通过一系列操作让图像信息中的关键信息更加凸出。同时,形态学的操作都是基于灰度图进行。

相关操作最主要的2种操作为腐蚀/膨胀,后面又延伸了综合操作-开运算/闭运算/形态学梯度/礼帽/黑帽等等。

腐蚀

腐蚀是最基本的形态学操作之一,能够去除图像的边界点,使图像沿着边界向内收缩,对于小于指定结构元的部分会去除。

所以,通过腐蚀可以达到去除一些外部噪音、元素分割等功能。

腐蚀原理说明 :

结构元 : 就是拥有一个中心位置并且有一定范围的结构,说白了就是一个二维数组。

扫描图像中的每一个像素点,结构元和扫描点重合,用结构元元素与覆盖的二值图做"与"运算,都为1则图像的像素值不变,否则改为0。

图示如下:

a图为原图,b图为结构元,当扫描到第2行,由于第一行存在2/3/4列的数据为0,所以经过腐蚀后,第2行的2/3/4列的1都变成了0,同理第4行。

扫描到第三行的2/3/4列时,由于都是1,第3行的2/3/4列分别不变,最终结果如d图所示。

函数语法说明: dst = cv2.erode( src,kernel,anchor,iterations,borderType,borderValue)

  • kernel : 腐蚀时使用的结构体,可以自己生成,也可以通过cv2.getStructuringElement()生成,就是个二维数组空间
  • anchor : 锚点位置,默认为(-1,-1),在核的中心位置
  • iterations : 腐蚀操作迭代次数,默认为1,只进行1次腐蚀操作
  • borderType : 边界处理方式,一般采用默认BORDER_CONSTANT
  • borderValue : 边界填充值,一般采用默认值

所以经常简化为 dst = cv2.erode( src ,kernel )

程序实例如下:

import cv2 as cv
import numpy as nporigin = cv.imread("erode.bmp")
# 使用了一个3*3的结构元,结构元面积越大,腐蚀的越厉害,结果图就越小
kernel_3 = np.ones((3, 3), np.uint8)# 不大明显,但有些触角已经变短了
erode_3 = cv.erode(origin, kernel_3)
# 反复刷了三次,图像进一步腐蚀减小,边角已经腐蚀掉了
erode_3_3 = cv.erode(origin, kernel_3, iterations=3)cv.imshow("origin", origin)
cv.imshow("erode_3", erode_3)
cv.imshow("erode_3_3", erode_3_3)cv.waitKey()
cv.destroyAllWindows()

运行结果如下:

 膨胀

膨胀操作同样是形态学的一种基本操作,膨胀和腐蚀的作用是相反的,膨胀操作能对边界进行扩张。膨胀操作可以将较近的2个对象连通在一起,也有利于填补

图片分割后图像内的空白处。

膨胀原理说明:

使用结构元扫描图像中的每一个像素点,结构元和扫描点重合,用结构元元素与覆盖的二值图做"与"运算,都为0则图像的像素值为0,否则改为1,这样图片边缘位置就会紧跟结构元进行扩张。

函数语法说明: dst = cv2.dilate( src ,kernel,anchor,iterations,borderType,borderValue)

函数参数与腐蚀参数完全一致,不做过多解释。方法可以简化为 dst = cv2.dilate( src,kernel )

程序实例如下:

import cv2 as cv
import numpy as nporigin = cv.imread("dilation.png")
# 使用了一个3*3的结构元,结构元面积越大,膨胀的越厉害,结果图就越大
kernel = np.ones((3, 3), np.uint8)
erode_3 = cv.dilate(origin, kernel)
# 连续膨胀3次
erode_3_3 = cv.dilate(origin, kernel, iterations=9)
cv.imshow("origin", origin)
cv.imshow("dilation_3", erode_3)
cv.imshow("dilation_3_3", erode_3_3)cv.waitKey()
cv.destroyAllWindows()

运行如下:

 

开运算

开运算是先进行腐蚀操作,后再进行膨胀操作。进行腐蚀操作可以把图像中目标外的噪声去掉,膨胀后再恢复目标的大小。

函数语法说明: dst = cv2.morphologyEx( src,cv2.MORPH_OPEN,kernel)

src,dst分别是原始图像和处理后的结果图像

cv2.MORPH_OPEN : 做开运算的标识

kernel : 运算使用的结构元

程序如下:

import cv2 as cv
import numpy as nporigin = cv.imread("open_pic.png", 0)
kernel = np.ones((5, 5), np.uint8)
open_pic = cv.morphologyEx(origin, cv.MORPH_OPEN, kernel) # 开运算
cv.imshow("origin", origin)
cv.imshow("open", open_pic)cv.waitKey()
cv.destroyAllWindows()

运行如下:

 

闭运算

闭运算是先进行膨胀操作,后再进行腐蚀操作。主要针对情景为图像中关键信息内部有小洞,膨胀操作会填充小洞。

函数语法说明: dst = cv2.morphologyEx( src,cv2.MORPH_CLOSE,kernel)

闭运算和开运算使用一样的函数,仅通过标识不同来实现不同操作。

cv2.MORPH_OPEN : 做闭运算的标识

程序如下:

import cv2 as cv
import numpy as nporigin = cv.imread("close_pic.png", 0)
kernel = np.ones((5, 5), np.uint8)
open_pic = cv.morphologyEx(origin, cv.MORPH_CLOSE, kernel) # 闭运算
cv.imshow("origin", origin)
cv.imshow("open", open_pic)cv.waitKey()
cv.destroyAllWindows()

运行结果如下:

 

形态学梯度

其实就是一副图像膨胀和腐蚀的差别,看起来就是前景物体的轮廓。

函数语法说明:dst = cv2.morphologyEx( src,cv2.MORPH_GRADIENT,kernel)

函数同开闭运算一样,只有样式不一样。

cv2.MORPH_GRADIENT : 形态学梯度的关键字

程序如下:

import cv2 as cv
import numpy as nporigin = cv.imread("abcdefg.png")
kernel = np.ones((5, 5), np.uint8)
open_pic = cv.morphologyEx(origin, cv.MORPH_GRADIENT, kernel)  # 形态学梯度
cv.imshow("origin", origin)
cv.imshow("gradient", open_pic)cv.waitKey()
cv.destroyAllWindows()

效果图如下:

 

礼帽

开运算是先腐蚀再膨胀,会消除图像中的噪声,而礼帽是原始图片与进行开运算后的得到的图像的差,也就是消除掉的噪声。

函数语法说明: dst = cv2.morphologyEx( src,cv2.MORPH_TOPHAT,kernel)

import cv2 as cv
import numpy as nporigin = cv.imread("open_pic.png")
kernel = np.ones((5, 5), np.uint8)
open_pic = cv.morphologyEx(origin, cv.MORPH_TOPHAT, kernel)  # 礼帽
cv.imshow("origin", origin)
cv.imshow("tophat", open_pic)cv.waitKey()
cv.destroyAllWindows()

运行如下:

 

黑帽

闭运算是先膨胀再腐蚀,具有填充内部小洞的功能,而黑帽是进行闭运算得到的图片与原始图像的差,所以显示的是之前补上的小洞图片。

函数语法说明: dst = cv2.morphologyEx( src,cv2.MORPH_BLACKHAT,kernel)

程序如下:

import cv2 as cv
import numpy as nporigin = cv.imread("close_pic.png")
kernel = np.ones((5, 5), np.uint8)
open_pic = cv.morphologyEx(origin, cv.MORPH_BLACKHAT, kernel)  # 黑帽
cv.imshow("origin", origin)
cv.imshow("blackhat", open_pic)cv.waitKey()
cv.destroyAllWindows()

运行如下:

 

 

相关文章:

第三章-OpenCV基础-7-形态学

前置 形态学主要是从图像中提取分量信息,该分量信息通常是图像理解时所使用的最本质的形状特征,对于表达和描绘图像的形状有重要意义。 大体就是通过一系列操作让图像信息中的关键信息更加凸出。同时,形态学的操作都是基于灰度图进行。 相关操作最主要…...

DeepFaceLab 中Ubuntu(docker gpu) 部署

DeepFaceLab 在windows图形界面部署比较多,下面用ubuntu 部署在服务器上。部署过程中python版本,或者protobuf版本可能有问题,所以建议用docker 代码下载 cd /trainssdgit clone --depth 1 https://github.com/nagadit/DeepFaceLab_Linux.g…...

分析帆软填报报表点提交的逻辑

1 点提交这里首先会校验数据,校验成功后就去入库数据,这里不分析校验,分析下校验成功后数据是怎么入库的。 2 我们知道当点提交时,发送的请求中的参数为 op=fr_write,cmd=submit_w_report. 在帆软报表中op表示服务,cmd表示服务中的一个动作处理。比如op=fr_write这个服务…...

【ROS学习笔记9】ROS常用API

【ROS学习笔记9】ROS常用API 文章目录【ROS学习笔记9】ROS常用API前言一、 初始化二、 话题与服务相关对象三、 回旋函数四、时间函数五、其他函数Reference写在前面,本系列笔记参考的是AutoLabor的教程,具体项目地址在 这里 前言 ROS的常用API&#xf…...

客户关系管理挑战:如何保持客户满意度并提高业绩?

当今,各行业市场竞争愈发激烈,对于保持客户满意度并提高业绩是每个企业都面临的挑战。而客户关系管理则是实现这一目标的关键,因为它涉及到与客户的互动和沟通,以及企业提供优质的产品和服务。在本文中,我们将探讨客户…...

Cartesi 2023 年 2 月回顾

2023年2月28日,通过ETH Denver和Cartesi的在线全球黑客马拉松一起开启黑客马拉松赛季!ETH Denver 正在热火朝天的进行着,我们正在为3月25日开始的首个全球在线黑客马拉松做准备。但这并不是本月发生的所有事情。我们在继续扩展和发展在全世界各地的社区&…...

《爆肝整理》保姆级系列教程python接口自动化测试框架(二十六)--批量执行用例 discover(详解)

简介  我们在写用例的时候,单个脚本的用例好执行,那么多个脚本的时候,如何批量执行呢?这时候就需要用到 unittest 里面的 discover 方法来加载用例了。加载用例后,用 unittest 里面的 TextTestRunner 这里类的 run 方…...

Ubuntu学习篇

前言 环境:Ubuntu 20.4lts Ubuntu系统跟centos还是有很多区别的,笔者之前一直使用的是centos7.x版本。 镜像下载地址:https://ubuntu.com/download/server#downloads 其他版本下载地址:https://launchpad.net/ubuntu/cdmirrors&a…...

extern关键字

1、基本解释: extern可以置于变量或者函数前,以标示变量或者函数的定义在别的文件中,提示编译器遇到此变量和数时在其他模块中寻找其定义。此外extern也可用来进行链接指定。 也就是说extern有两个作用。   第一个,当它与"C"一起…...

T3 出行云原生容器化平台实践

作者:林勇,就职于南京领行科技股份有限公司,担任云原生负责人,也是公司容器化项目的负责人。主要负责 T3 出行云原生生态相关的所有工作,如服务容器化、多 Kubernetes 集群建设、应用混部、降本增效、云原生可观测性基…...

从0开始学python -44

Python3 正则表达式 -2 检索和替换 Python 的re模块提供了re.sub用于替换字符串中的匹配项。 语法: re.sub(pattern, repl,string, count0, flags0)参数: pattern : 正则中的模式字符串。repl : 替换的字符串,也可为一个函数。string : …...

22- estimater使用 (TensorFlow系列) (深度学习)

知识要点 estimater 有点没理解透 数据集是泰坦尼克号人员幸存数据. 读取数据:train_df pd.read_csv(./data/titanic/train.csv) 显示数据特征:train_df.info() 显示开头部分数据:train_df.head() 提取目标特征:y_train tr…...

eKuiper 1.8.0 发布:零代码实现图像/视频流的实时 AI 推理

LF Edge eKuiper 是 Golang 实现的轻量级物联网边缘分析、流式处理开源软件,可以运行在各类资源受限的边缘设备上。eKuiper 的主要目标是在边缘端提供一个流媒体软件框架(类似于 Apache Flink )。eKuiper 的规则引擎允许用户提供基于 SQL 或基…...

[Ansible系列]ansible JinJia2过滤器

目录 一. JinJia2简介 二. JinJia2模板使用 2.1 在play中使用jinjia2 2.2 template模块使用 2.3 jinjia2条件语句 2.4 jinjia2循环语句 2.5 jinjia2过滤器 2.5.1 default过滤器 2.5.2 字符串操作相关过滤器 2.5.3 数字操作相关过滤器 2.5.4 列表操作…...

Cookie、Session、Token区分

一开始接触这三个东西,肯定会被绕的不知道都是干什么的。1、为什么要有它们?首先,由于HTTP协议是无状态的,所谓的无状态,其实就是 客户端每次想要与服务端通信,都必须重新与服务端连接,这就意味…...

回暖!“数”说城市烟火气背后

“人间烟火气,最抚凡人心”。在全国各地政策支持以及企业的积极生产运营下,经济、社会、生活各领域正加速回暖,“烟火气”在城市中升腾,信心和希望正在每个人心中燃起。 发展新阶段,高效统筹经济发展和公共安全&#…...

JS逆向-百度翻译sign

前言 本文是该专栏的第36篇,后面会持续分享python爬虫干货知识,记得关注。 有粉丝留言,近期需要做个翻译功能,考虑到百度翻译语言语种比较全面,但是它的参数被逆向加密了,对于这种情况需要怎么处理呢?所以本文以它为例。 废话不多说,跟着笔者直接往下看正文详细内容。…...

Fiddler抓包之Fiddler过滤器(Filters)调试

Filters:过滤器,帮助我们过滤请求。 如果需要过滤掉与测试项目无关的抓包请求,更加精准的展现抓到的请求,而不是杂乱的一堆,那功能强大的 Filters 过滤器能帮到你。 2、Filters界面说明 fiddler中的过滤 说明&#…...

【xib文件的加载过程 Objective-C语言】

一、xib文件的加载过程: 1.xib文件,是不是在这里啊: View这个文件夹里, 然后呢,我们加载xib是怎么加载的呢, 是不是在控制器里,通过我们这个类方法,加载xib: TestAppView *appView = [TestAppView appView]; + (instancetype)appView{NSBundle *rootBundle = [N…...

react setState学习记录

react setState学习记录1.总体看来2.setState的执行是异步的3.函数式setState1.总体看来 (1). setState(stateChange, [callback])------对象式的setState 1.stateChange为状态改变对象(该对象可以体现出状态的更改) 2.callback是可选的回调函数, 它在状态更新完毕、界面也更新…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...