第三章-OpenCV基础-7-形态学
前置
形态学主要是从图像中提取分量信息,该分量信息通常是图像理解时所使用的最本质的形状特征,对于表达和描绘图像的形状有重要意义。
大体就是通过一系列操作让图像信息中的关键信息更加凸出。同时,形态学的操作都是基于灰度图进行。
相关操作最主要的2种操作为腐蚀/膨胀,后面又延伸了综合操作-开运算/闭运算/形态学梯度/礼帽/黑帽等等。
腐蚀
腐蚀是最基本的形态学操作之一,能够去除图像的边界点,使图像沿着边界向内收缩,对于小于指定结构元的部分会去除。
所以,通过腐蚀可以达到去除一些外部噪音、元素分割等功能。
腐蚀原理说明 :
结构元 : 就是拥有一个中心位置并且有一定范围的结构,说白了就是一个二维数组。
扫描图像中的每一个像素点,结构元和扫描点重合,用结构元元素与覆盖的二值图做"与"运算,都为1则图像的像素值不变,否则改为0。
图示如下:
a图为原图,b图为结构元,当扫描到第2行,由于第一行存在2/3/4列的数据为0,所以经过腐蚀后,第2行的2/3/4列的1都变成了0,同理第4行。
扫描到第三行的2/3/4列时,由于都是1,第3行的2/3/4列分别不变,最终结果如d图所示。
函数语法说明: dst = cv2.erode( src,kernel,anchor,iterations,borderType,borderValue)
- kernel : 腐蚀时使用的结构体,可以自己生成,也可以通过cv2.getStructuringElement()生成,就是个二维数组空间
- anchor : 锚点位置,默认为(-1,-1),在核的中心位置
- iterations : 腐蚀操作迭代次数,默认为1,只进行1次腐蚀操作
- borderType : 边界处理方式,一般采用默认BORDER_CONSTANT
- borderValue : 边界填充值,一般采用默认值
所以经常简化为 dst = cv2.erode( src ,kernel )
程序实例如下:
import cv2 as cv
import numpy as nporigin = cv.imread("erode.bmp")
# 使用了一个3*3的结构元,结构元面积越大,腐蚀的越厉害,结果图就越小
kernel_3 = np.ones((3, 3), np.uint8)# 不大明显,但有些触角已经变短了
erode_3 = cv.erode(origin, kernel_3)
# 反复刷了三次,图像进一步腐蚀减小,边角已经腐蚀掉了
erode_3_3 = cv.erode(origin, kernel_3, iterations=3)cv.imshow("origin", origin)
cv.imshow("erode_3", erode_3)
cv.imshow("erode_3_3", erode_3_3)cv.waitKey()
cv.destroyAllWindows()
运行结果如下:
膨胀
膨胀操作同样是形态学的一种基本操作,膨胀和腐蚀的作用是相反的,膨胀操作能对边界进行扩张。膨胀操作可以将较近的2个对象连通在一起,也有利于填补
图片分割后图像内的空白处。
膨胀原理说明:
使用结构元扫描图像中的每一个像素点,结构元和扫描点重合,用结构元元素与覆盖的二值图做"与"运算,都为0则图像的像素值为0,否则改为1,这样图片边缘位置就会紧跟结构元进行扩张。
函数语法说明: dst = cv2.dilate( src ,kernel,anchor,iterations,borderType,borderValue)
函数参数与腐蚀参数完全一致,不做过多解释。方法可以简化为 dst = cv2.dilate( src,kernel )
程序实例如下:
import cv2 as cv
import numpy as nporigin = cv.imread("dilation.png")
# 使用了一个3*3的结构元,结构元面积越大,膨胀的越厉害,结果图就越大
kernel = np.ones((3, 3), np.uint8)
erode_3 = cv.dilate(origin, kernel)
# 连续膨胀3次
erode_3_3 = cv.dilate(origin, kernel, iterations=9)
cv.imshow("origin", origin)
cv.imshow("dilation_3", erode_3)
cv.imshow("dilation_3_3", erode_3_3)cv.waitKey()
cv.destroyAllWindows()
运行如下:
开运算
开运算是先进行腐蚀操作,后再进行膨胀操作。进行腐蚀操作可以把图像中目标外的噪声去掉,膨胀后再恢复目标的大小。
函数语法说明: dst = cv2.morphologyEx( src,cv2.MORPH_OPEN,kernel)
src,dst分别是原始图像和处理后的结果图像
cv2.MORPH_OPEN : 做开运算的标识
kernel : 运算使用的结构元
程序如下:
import cv2 as cv
import numpy as nporigin = cv.imread("open_pic.png", 0)
kernel = np.ones((5, 5), np.uint8)
open_pic = cv.morphologyEx(origin, cv.MORPH_OPEN, kernel) # 开运算
cv.imshow("origin", origin)
cv.imshow("open", open_pic)cv.waitKey()
cv.destroyAllWindows()
运行如下:
闭运算
闭运算是先进行膨胀操作,后再进行腐蚀操作。主要针对情景为图像中关键信息内部有小洞,膨胀操作会填充小洞。
函数语法说明: dst = cv2.morphologyEx( src,cv2.MORPH_CLOSE,kernel)
闭运算和开运算使用一样的函数,仅通过标识不同来实现不同操作。
cv2.MORPH_OPEN : 做闭运算的标识
程序如下:
import cv2 as cv
import numpy as nporigin = cv.imread("close_pic.png", 0)
kernel = np.ones((5, 5), np.uint8)
open_pic = cv.morphologyEx(origin, cv.MORPH_CLOSE, kernel) # 闭运算
cv.imshow("origin", origin)
cv.imshow("open", open_pic)cv.waitKey()
cv.destroyAllWindows()
运行结果如下:
形态学梯度
其实就是一副图像膨胀和腐蚀的差别,看起来就是前景物体的轮廓。
函数语法说明:dst = cv2.morphologyEx( src,cv2.MORPH_GRADIENT,kernel)
函数同开闭运算一样,只有样式不一样。
cv2.MORPH_GRADIENT : 形态学梯度的关键字
程序如下:
import cv2 as cv
import numpy as nporigin = cv.imread("abcdefg.png")
kernel = np.ones((5, 5), np.uint8)
open_pic = cv.morphologyEx(origin, cv.MORPH_GRADIENT, kernel) # 形态学梯度
cv.imshow("origin", origin)
cv.imshow("gradient", open_pic)cv.waitKey()
cv.destroyAllWindows()
效果图如下:
礼帽
开运算是先腐蚀再膨胀,会消除图像中的噪声,而礼帽是原始图片与进行开运算后的得到的图像的差,也就是消除掉的噪声。
函数语法说明: dst = cv2.morphologyEx( src,cv2.MORPH_TOPHAT,kernel)
import cv2 as cv
import numpy as nporigin = cv.imread("open_pic.png")
kernel = np.ones((5, 5), np.uint8)
open_pic = cv.morphologyEx(origin, cv.MORPH_TOPHAT, kernel) # 礼帽
cv.imshow("origin", origin)
cv.imshow("tophat", open_pic)cv.waitKey()
cv.destroyAllWindows()
运行如下:
黑帽
闭运算是先膨胀再腐蚀,具有填充内部小洞的功能,而黑帽是进行闭运算得到的图片与原始图像的差,所以显示的是之前补上的小洞图片。
函数语法说明: dst = cv2.morphologyEx( src,cv2.MORPH_BLACKHAT,kernel)
程序如下:
import cv2 as cv
import numpy as nporigin = cv.imread("close_pic.png")
kernel = np.ones((5, 5), np.uint8)
open_pic = cv.morphologyEx(origin, cv.MORPH_BLACKHAT, kernel) # 黑帽
cv.imshow("origin", origin)
cv.imshow("blackhat", open_pic)cv.waitKey()
cv.destroyAllWindows()
运行如下:
相关文章:

第三章-OpenCV基础-7-形态学
前置 形态学主要是从图像中提取分量信息,该分量信息通常是图像理解时所使用的最本质的形状特征,对于表达和描绘图像的形状有重要意义。 大体就是通过一系列操作让图像信息中的关键信息更加凸出。同时,形态学的操作都是基于灰度图进行。 相关操作最主要…...
DeepFaceLab 中Ubuntu(docker gpu) 部署
DeepFaceLab 在windows图形界面部署比较多,下面用ubuntu 部署在服务器上。部署过程中python版本,或者protobuf版本可能有问题,所以建议用docker 代码下载 cd /trainssdgit clone --depth 1 https://github.com/nagadit/DeepFaceLab_Linux.g…...
分析帆软填报报表点提交的逻辑
1 点提交这里首先会校验数据,校验成功后就去入库数据,这里不分析校验,分析下校验成功后数据是怎么入库的。 2 我们知道当点提交时,发送的请求中的参数为 op=fr_write,cmd=submit_w_report. 在帆软报表中op表示服务,cmd表示服务中的一个动作处理。比如op=fr_write这个服务…...
【ROS学习笔记9】ROS常用API
【ROS学习笔记9】ROS常用API 文章目录【ROS学习笔记9】ROS常用API前言一、 初始化二、 话题与服务相关对象三、 回旋函数四、时间函数五、其他函数Reference写在前面,本系列笔记参考的是AutoLabor的教程,具体项目地址在 这里 前言 ROS的常用API…...

客户关系管理挑战:如何保持客户满意度并提高业绩?
当今,各行业市场竞争愈发激烈,对于保持客户满意度并提高业绩是每个企业都面临的挑战。而客户关系管理则是实现这一目标的关键,因为它涉及到与客户的互动和沟通,以及企业提供优质的产品和服务。在本文中,我们将探讨客户…...

Cartesi 2023 年 2 月回顾
2023年2月28日,通过ETH Denver和Cartesi的在线全球黑客马拉松一起开启黑客马拉松赛季!ETH Denver 正在热火朝天的进行着,我们正在为3月25日开始的首个全球在线黑客马拉松做准备。但这并不是本月发生的所有事情。我们在继续扩展和发展在全世界各地的社区&…...

《爆肝整理》保姆级系列教程python接口自动化测试框架(二十六)--批量执行用例 discover(详解)
简介 我们在写用例的时候,单个脚本的用例好执行,那么多个脚本的时候,如何批量执行呢?这时候就需要用到 unittest 里面的 discover 方法来加载用例了。加载用例后,用 unittest 里面的 TextTestRunner 这里类的 run 方…...
Ubuntu学习篇
前言 环境:Ubuntu 20.4lts Ubuntu系统跟centos还是有很多区别的,笔者之前一直使用的是centos7.x版本。 镜像下载地址:https://ubuntu.com/download/server#downloads 其他版本下载地址:https://launchpad.net/ubuntu/cdmirrors&a…...
extern关键字
1、基本解释: extern可以置于变量或者函数前,以标示变量或者函数的定义在别的文件中,提示编译器遇到此变量和数时在其他模块中寻找其定义。此外extern也可用来进行链接指定。 也就是说extern有两个作用。 第一个,当它与"C"一起…...

T3 出行云原生容器化平台实践
作者:林勇,就职于南京领行科技股份有限公司,担任云原生负责人,也是公司容器化项目的负责人。主要负责 T3 出行云原生生态相关的所有工作,如服务容器化、多 Kubernetes 集群建设、应用混部、降本增效、云原生可观测性基…...
从0开始学python -44
Python3 正则表达式 -2 检索和替换 Python 的re模块提供了re.sub用于替换字符串中的匹配项。 语法: re.sub(pattern, repl,string, count0, flags0)参数: pattern : 正则中的模式字符串。repl : 替换的字符串,也可为一个函数。string : …...

22- estimater使用 (TensorFlow系列) (深度学习)
知识要点 estimater 有点没理解透 数据集是泰坦尼克号人员幸存数据. 读取数据:train_df pd.read_csv(./data/titanic/train.csv) 显示数据特征:train_df.info() 显示开头部分数据:train_df.head() 提取目标特征:y_train tr…...

eKuiper 1.8.0 发布:零代码实现图像/视频流的实时 AI 推理
LF Edge eKuiper 是 Golang 实现的轻量级物联网边缘分析、流式处理开源软件,可以运行在各类资源受限的边缘设备上。eKuiper 的主要目标是在边缘端提供一个流媒体软件框架(类似于 Apache Flink )。eKuiper 的规则引擎允许用户提供基于 SQL 或基…...
[Ansible系列]ansible JinJia2过滤器
目录 一. JinJia2简介 二. JinJia2模板使用 2.1 在play中使用jinjia2 2.2 template模块使用 2.3 jinjia2条件语句 2.4 jinjia2循环语句 2.5 jinjia2过滤器 2.5.1 default过滤器 2.5.2 字符串操作相关过滤器 2.5.3 数字操作相关过滤器 2.5.4 列表操作…...
Cookie、Session、Token区分
一开始接触这三个东西,肯定会被绕的不知道都是干什么的。1、为什么要有它们?首先,由于HTTP协议是无状态的,所谓的无状态,其实就是 客户端每次想要与服务端通信,都必须重新与服务端连接,这就意味…...

回暖!“数”说城市烟火气背后
“人间烟火气,最抚凡人心”。在全国各地政策支持以及企业的积极生产运营下,经济、社会、生活各领域正加速回暖,“烟火气”在城市中升腾,信心和希望正在每个人心中燃起。 发展新阶段,高效统筹经济发展和公共安全&#…...

JS逆向-百度翻译sign
前言 本文是该专栏的第36篇,后面会持续分享python爬虫干货知识,记得关注。 有粉丝留言,近期需要做个翻译功能,考虑到百度翻译语言语种比较全面,但是它的参数被逆向加密了,对于这种情况需要怎么处理呢?所以本文以它为例。 废话不多说,跟着笔者直接往下看正文详细内容。…...

Fiddler抓包之Fiddler过滤器(Filters)调试
Filters:过滤器,帮助我们过滤请求。 如果需要过滤掉与测试项目无关的抓包请求,更加精准的展现抓到的请求,而不是杂乱的一堆,那功能强大的 Filters 过滤器能帮到你。 2、Filters界面说明 fiddler中的过滤 说明&#…...
【xib文件的加载过程 Objective-C语言】
一、xib文件的加载过程: 1.xib文件,是不是在这里啊: View这个文件夹里, 然后呢,我们加载xib是怎么加载的呢, 是不是在控制器里,通过我们这个类方法,加载xib: TestAppView *appView = [TestAppView appView]; + (instancetype)appView{NSBundle *rootBundle = [N…...

react setState学习记录
react setState学习记录1.总体看来2.setState的执行是异步的3.函数式setState1.总体看来 (1). setState(stateChange, [callback])------对象式的setState 1.stateChange为状态改变对象(该对象可以体现出状态的更改) 2.callback是可选的回调函数, 它在状态更新完毕、界面也更新…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...