当前位置: 首页 > news >正文

pandas教程:USDA Food Database USDA食品数据库

文章目录

  • 14.4 USDA Food Database(美国农业部食品数据库)

14.4 USDA Food Database(美国农业部食品数据库)

这个数据是关于食物营养成分的。存储格式是JSON,看起来像这样:

{"id": 21441, "description": "KENTUCKY FRIED CHICKEN, Fried Chicken, EXTRA CRISPY, Wing, meat and skin with breading", "tags": ["KFC"], "manufacturer": "Kentucky Fried Chicken", "group": "Fast Foods", "portions": [ { "amount": 1, "unit": "wing, with skin", "grams": 68.0}...],"nutrients": [ { "value": 20.8, "units": "g", "description": "Protein", "group": "Composition" },...]
}     

每种食物都有一系列特征,其中有两个list,protionsnutrients。我们必须把这样的数据进行处理,方便之后的分析。

这里使用python内建的json模块:

import pandas as pd
import numpy as np
import json
pd.options.display.max_rows = 10
db = json.load(open('../datasets/usda_food/database.json'))
len(db)
6636
db[0].keys()
dict_keys(['manufacturer', 'description', 'group', 'id', 'tags', 'nutrients', 'portions'])
db[0]['nutrients'][0]
{'description': 'Protein','group': 'Composition','units': 'g','value': 25.18}
nutrients = pd.DataFrame(db[0]['nutrients'])
nutrients
descriptiongroupunitsvalue
0ProteinCompositiong25.180
1Total lipid (fat)Compositiong29.200
2Carbohydrate, by differenceCompositiong3.060
3AshOtherg3.280
4EnergyEnergykcal376.000
...............
157SerineAmino Acidsg1.472
158CholesterolOthermg93.000
159Fatty acids, total saturatedOtherg18.584
160Fatty acids, total monounsaturatedOtherg8.275
161Fatty acids, total polyunsaturatedOtherg0.830

162 rows × 4 columns

当把由字典组成的list转换为DataFrame的时候,我们可以吹创业提取的list部分。这里我们提取食品名,群(group),ID,制造商:

info_keys = ['description', 'group', 'id', 'manufacturer']
info = pd.DataFrame(db, columns=info_keys)
info[:5]
descriptiongroupidmanufacturer
0Cheese, carawayDairy and Egg Products1008
1Cheese, cheddarDairy and Egg Products1009
2Cheese, edamDairy and Egg Products1018
3Cheese, fetaDairy and Egg Products1019
4Cheese, mozzarella, part skim milkDairy and Egg Products1028
info.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6636 entries, 0 to 6635
Data columns (total 4 columns):
description     6636 non-null object
group           6636 non-null object
id              6636 non-null int64
manufacturer    5195 non-null object
dtypes: int64(1), object(3)
memory usage: 207.5+ KB

我们可以看到食物群的分布,使用value_counts:

pd.value_counts(info.group)[:10]
Vegetables and Vegetable Products    812
Beef Products                        618
Baked Products                       496
Breakfast Cereals                    403
Legumes and Legume Products          365
Fast Foods                           365
Lamb, Veal, and Game Products        345
Sweets                               341
Pork Products                        328
Fruits and Fruit Juices              328
Name: group, dtype: int64

这里我们对所有的nutrient数据做一些分析,把每种食物的nutrient部分组合成一个大表格。首先,把每个食物的nutrient列表变为DataFrame,添加一列为id,然后把id添加到DataFrame中,接着使用concat联结到一起:

# 先创建一个空DataFrame用来保存最后的结果
# 这部分代码运行时间较长,请耐心等待
nutrients_all = pd.DataFrame()for food in db:nutrients = pd.DataFrame(food['nutrients'])nutrients['id'] = food['id']nutrients_all = nutrients_all.append(nutrients, ignore_index=True)

译者:虽然作者在书中说了用concat联结在一起,但我实际测试后,这个concat的方法非常耗时,用时几乎是append方法的两倍,所以上面的代码中使用了append方法。

一切正常的话出来的效果是这样的:

nutrients_all
descriptiongroupunitsvalueid
0ProteinCompositiong25.1801008
1Total lipid (fat)Compositiong29.2001008
2Carbohydrate, by differenceCompositiong3.0601008
3AshOtherg3.2801008
4EnergyEnergykcal376.0001008
..................
389350Vitamin B-12, addedVitaminsmcg0.00043546
389351CholesterolOthermg0.00043546
389352Fatty acids, total saturatedOtherg0.07243546
389353Fatty acids, total monounsaturatedOtherg0.02843546
389354Fatty acids, total polyunsaturatedOtherg0.04143546

389355 rows × 5 columns

这个DataFrame中有一些重复的部分,看一下有多少重复的行:

nutrients_all.duplicated().sum() # number of duplicates
14179

把重复的部分去掉:

nutrients_all = nutrients_all.drop_duplicates()
nutrients_all
descriptiongroupunitsvalueid
0ProteinCompositiong25.1801008
1Total lipid (fat)Compositiong29.2001008
2Carbohydrate, by differenceCompositiong3.0601008
3AshOtherg3.2801008
4EnergyEnergykcal376.0001008
..................
389350Vitamin B-12, addedVitaminsmcg0.00043546
389351CholesterolOthermg0.00043546
389352Fatty acids, total saturatedOtherg0.07243546
389353Fatty acids, total monounsaturatedOtherg0.02843546
389354Fatty acids, total polyunsaturatedOtherg0.04143546

375176 rows × 5 columns

为了与info_keys中的groupdescripton区别开,我们把列名更改一下:

col_mapping = {'description': 'food','group': 'fgroup'}
info = info.rename(columns=col_mapping, copy=False)
info.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6636 entries, 0 to 6635
Data columns (total 4 columns):
food            6636 non-null object
fgroup          6636 non-null object
id              6636 non-null int64
manufacturer    5195 non-null object
dtypes: int64(1), object(3)
memory usage: 207.5+ KB
col_mapping = {'description' : 'nutrient','group': 'nutgroup'}
nutrients_all = nutrients_all.rename(columns=col_mapping, copy=False)
nutrients_all
nutrientnutgroupunitsvalueid
0ProteinCompositiong25.1801008
1Total lipid (fat)Compositiong29.2001008
2Carbohydrate, by differenceCompositiong3.0601008
3AshOtherg3.2801008
4EnergyEnergykcal376.0001008
..................
389350Vitamin B-12, addedVitaminsmcg0.00043546
389351CholesterolOthermg0.00043546
389352Fatty acids, total saturatedOtherg0.07243546
389353Fatty acids, total monounsaturatedOtherg0.02843546
389354Fatty acids, total polyunsaturatedOtherg0.04143546

375176 rows × 5 columns

上面所有步骤结束后,我们可以把infonutrients_all合并(merge):

ndata = pd.merge(nutrients_all, info, on='id', how='outer')
ndata.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 375176 entries, 0 to 375175
Data columns (total 8 columns):
nutrient        375176 non-null object
nutgroup        375176 non-null object
units           375176 non-null object
value           375176 non-null float64
id              375176 non-null int64
food            375176 non-null object
fgroup          375176 non-null object
manufacturer    293054 non-null object
dtypes: float64(1), int64(1), object(6)
memory usage: 25.8+ MB
ndata.iloc[30000]
nutrient                                       Glycine
nutgroup                                   Amino Acids
units                                                g
value                                             0.04
id                                                6158
food            Soup, tomato bisque, canned, condensed
fgroup                      Soups, Sauces, and Gravies
manufacturer                                          
Name: 30000, dtype: object

我们可以对食物群(food group)和营养类型(nutrient type)分组后,对中位数进行绘图:

result = ndata.groupby(['nutrient', 'fgroup'])['value'].quantile(0.5)
%matplotlib inline
result['Zinc, Zn'].sort_values().plot(kind='barh', figsize=(10, 8))

在这里插入图片描述

我们还可以找到每一种营养成分含量最多的食物是什么:

by_nutrient = ndata.groupby(['nutgroup', 'nutrient'])get_maximum = lambda x: x.loc[x.value.idxmax()]
get_minimum = lambda x: x.loc[x.value.idxmin()]max_foods = by_nutrient.apply(get_maximum)[['value', 'food']]# make the food a little smaller
max_foods.food = max_foods.food.str[:50]

因为得到的DataFrame太大,这里只输出'Amino Acids'(氨基酸)的营养群(nutrient group):

max_foods.loc['Amino Acids']['food']
nutrient
Alanine                          Gelatins, dry powder, unsweetened
Arginine                              Seeds, sesame flour, low-fat
Aspartic acid                                  Soy protein isolate
Cystine               Seeds, cottonseed flour, low fat (glandless)
Glutamic acid                                  Soy protein isolate...                        
Serine           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Threonine        Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Tryptophan        Sea lion, Steller, meat with fat (Alaska Native)
Tyrosine         Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Valine           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Name: food, Length: 19, dtype: object

相关文章:

pandas教程:USDA Food Database USDA食品数据库

文章目录 14.4 USDA Food Database&#xff08;美国农业部食品数据库&#xff09; 14.4 USDA Food Database&#xff08;美国农业部食品数据库&#xff09; 这个数据是关于食物营养成分的。存储格式是JSON&#xff0c;看起来像这样&#xff1a; {"id": 21441, &quo…...

0基础学习VR全景平台篇第122篇:VR视频剪辑和输出 - PR软件教程

上课&#xff01;全体起立~ 大家好&#xff0c;欢迎观看蛙色官方系列全景摄影课程&#xff01; 开始之前如果没有接触过pr这款软件的话&#xff0c;建议先去看上一篇 认识视频剪辑软件Premiere 大致了解一下pr。 回到正题今天来教大家VR视频的剪辑和输出 我们先双击打开…...

ucharts中,当数据为0时,不显示

当为0时&#xff0c;会显示出来&#xff0c;值比较小的时候&#xff0c;数据会显示在一起&#xff0c;不美观 期望效果&#xff1a; 实现步骤&#xff1a; 我是将uCharts插件下载导入到src/uni_modules下的 1、修改src/uni_modules/qiun-data-charts/js_sdk/u-charts/confi…...

React函数组件渲染两次

渲染两次是因为react默认开启了严格模式 React.StrictMode标签作用&#xff1a; 1、识别不安全的生命周期 2、关于使用过时字符串 ref API 的警告 3、关于使用废弃的 findDOMNode 方法的警告 4、检测意外的副作用 5、检测过时的 context API 注释掉React.StrictMode即为关闭严…...

人工智能 - 图像分类:发展历史、技术全解与实战

目录 一、&#xff1a;图像分类的历史与进展历史回顾深度学习的革命当前趋势未来展望 二&#xff1a;核心技术解析图像预处理神经网络基础卷积神经网络&#xff08;CNN&#xff09;深度学习框架 第三部分&#xff1a;核心代码与实现环境搭建数据加载和预处理构建CNN模型模型训练…...

go标准库

golang标准库io包 input output io操作是一个很庞大的工程&#xff0c;被封装到了许多包中以供使用 先来讲最基本的io接口 Go语言中最基本的I/O接口是io.Reader和io.Writer。这些接口定义了读取和写入数据的通用方法&#xff0c;为不同类型的数据源和数据目标提供了统一的接…...

【Web安全】拿到phpMyAdmin如何获取权限

文章目录 1、outfile写一句话2、general_log_file写一句话 通过弱口令拿到进到phpMyAdmin页面如何才能获取权限 1、outfile写一句话 尝试执行outfile语句写入一句话木马 select "<?php eval($_REQUEST[6868])?>" into outfile "C:\\phpStudy\\WWW\\p…...

Python与GPU编程快速入门(一)

Python与GPU编程快速入门 文章目录 Python与GPU编程快速入门1、图形处理单元(Graphics Processing Unit,GPU)1.1 并行设计1.2 速度优势本系列文章将详细介绍如何在Python中使用CUDA,从而使Python应用程序加速。 1、图形处理单元(Graphics Processing Unit,GPU) 图形处理…...

C语言--每日选择题--Day29

第一题 1. while(1) {x;}, 当x的取合适的初值时&#xff0c;可以避免死循环。 A&#xff1a;正确 B&#xff1a;错误 答案及解析 B 循环条件为1&#xff0c;在条件判断中&#xff0c;0为假&#xff0c;非0为真&#xff0c;1位真&#xff0c;所以无论x取什么&#xff0c;都是死循…...

ESP32:物联网时代的神器

随着物联网技术的不断发展&#xff0c;人们的生活正在发生着翻天覆地的变化。在这个万物互联的时代&#xff0c;ESP32作为一种功能强大的微控制器&#xff0c;正发挥着越来越重要的作用。本文将介绍ESP32的特点和应用&#xff0c;并探讨其在物联网时代的优势和潜力。 一、ESP3…...

docker和docker-compose生产的容器,不在同一个网段,解决方式

在实际项目中&#xff0c;使用docker run xxXx 和docker-compose up -d 不在同一个网段&#xff0c;一个是默认是172.17.x.x, 另一个是172.19.x.x。为解决这个问题需要自定义一个网络&#xff0c;我命名为“my-bridge” 首先熟悉几条命令&#xff1a; docker network ls 或…...

基于JavaWeb+SSM+Vue校园综合服务小程序系统的设计和实现

基于JavaWebSSMVue校园综合服务小程序系统的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 Lun文目录 摘 要 I Abstract II 第一章 绪 论 1 1.1选题背景 2 1.2研究现状 3 1.3研究内容 …...

私域运营:资源盘点及争取策略

在私域运营过程中&#xff0c;资源盘点是一项至关重要的工作。它可以帮助我们了解手头现有的资源和支持&#xff0c;以便更高效地利用它们。本文将探讨如何进行私域运营中的资源盘点&#xff0c;以及如何争取更多的资源和支持。 一、现有资源 在私域运营中&#xff0c;我们需要…...

图书管理系统源码,图书管理系统开发,图书借阅系统源码整体功能演示

用户登录 基础资料 操作员管理 超期罚金设置 读者分类 读者管理 图书分类 图书管理 图书借还管理 图书借取 图书还去 图书借还查询 读者借书排行 用户登录 运行View目录下Login文件夹下的Index.csthml出现登录界面&#xff0c;输入用户名密码分别是admin密码admin12…...

(C++)字符串相乘

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 题目链接如下&#xff1a; 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能&#xff0c;轻松拿下世界 IT 名…...

1992-2021年区县经过矫正的夜间灯光数据(GNLD、VIIRS)

1992-2021年区县经过矫正的夜间灯光数据&#xff08;GNLD、VIIRS&#xff09; 1、时间&#xff1a;1992-2021年3月&#xff0c;其中1992-2013年为年度数据&#xff0c;2013-2021年3月为月度数据 2、来源&#xff1a;DMSP、VIIRS 3、范围&#xff1a;区县数据 4、指标解释&a…...

RK3568笔记六:基于Yolov8的训练及部署

若该文为原创文章&#xff0c;转载请注明原文出处。 基于Yolov8的训练及部署&#xff0c;参考鲁班猫的手册训练自己的数据集部署到RK3568,用的是正点的板子。 1、 使用 conda 创建虚拟环境 conda create -n yolov8 python3.8 ​ conda activate yolov8 2、 安装 pytorch 等…...

【活动回顾】sCrypt在柏林B2029开发者周

B2029 是柏林的一个区块链爱好者、艺术家和建设者聚会&#xff0c;学习、讨论和共同构建比特币区块链地方。 在2023年6月9日至11日&#xff0c;举行了第7次Hello Metanet研讨会。本次研讨会旨在为参与者提供一个学习、讨论和共同构建比特币区块链的平台。 在这个充满激情和创意…...

【SpringBoot3+Vue3】六【完】【番外篇】- (0-1临摹)

目录 一、后端 1、服务器管理 1.1 ProjectController 1.2 ProjectService 1.3 ProjectServiceImpl 1.4 ProjectMapper 1.5 实体类 2、项目管理 2.1 ServerManageController 2.2 ServerManageService 2.3 ServerManageServiceImpl 2.4 ServerManageMapper 2.5 Serv…...

生成式AI与大语言模型,东软已经准备就绪

伴随着ChatGPT的火爆全球&#xff0c;数以百计的大语言模型也争先恐后地加入了这一战局&#xff0c;掀起了一场轰轰烈烈的“百模大战”。毋庸置疑的是&#xff0c;继方兴未艾的人工智能普及大潮之后&#xff0c;生成式AI与大语言模型正在全球开启新一轮生产力革新的科技浪潮。 …...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...