Spark-java版
SparkContext初始化
相关知识
- SparkConf 是
SparkContext的构造参数,储存着Spark相关的配置信息,且必须指定Master(比如Local)和AppName(应用名称),否则会抛出异常; - SparkContext 是程序执行的入口,一个
SparkContext代表一个Application。
初始化过程的主要核心:
- 依据
SparkConf创建一个Spark执行环境SparkEnv; - 创建并初始化
Spark UI,方便用户监控,默认端口为4040; - 设置
Hadoop相关配置及Executor环境变量; - 创建和启动
TaskScheduler,DAGScheduler。
初始化方式:
SparkConf conf = new SparkConf().setAppName(appName).setMaster(master)JavaSparkContext sc=new JavaSparkContext(conf)
程序运行完后需使用sc.stop()关闭SparkContext。
import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.SparkConf; import java.util.Arrays; import java.util.List;public class Edu {public static void main(String[] args) {/********** Begin **********///第一步:设置SparkConfSparkConf conf = new SparkConf().setAppName("educoder").setMaster("local");//第二步:初始化SparkContextJavaSparkContext sc = new JavaSparkContext(conf);/********** End **********/List<String> data = Arrays.asList("hello");JavaRDD<String> r1 = sc.parallelize(data);System.out.print(r1.collect());/********** Begin **********///第三步:关闭SparkContextsc.stop();/********** End **********/} }
集合并行化创建RDD
任务描述
本关任务:计算并输出各个学生的总成绩。
相关知识
为了完成本关任务,你需要掌握:1.集合并行化创建RDD,2.reduceByKey。
集合创建RDD
Spark会将集合中的数据拷贝到集群上去,形成一个分布式的数据集合,也就是一个RDD。相当于是,集合中的部分数据会到一个节点上,而另一部分数据会到其他节点上。然后就可以用并行的方式来操作这个分布式数据集合,即RDD。
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(1);
list.add(2);
list.add(3);
JavaRDD<Integer> rdd = sc.parallelize(list,3);//参数1:Seq集合,必须。参数2:分区数,默认为该Application分配到的资源的CPU核数Integer sum = rdd.reduce((a, b) -> a + b);System.out.print(sum);
输出:6
reduceByKey()
对元素为RDD[K,V]对的RDD中Key相同的元素的Value进行聚合。
List<Tuple2<String,Integer>> list = Arrays.asList(new Tuple2("hive",2),new Tuple2("spark",4),new Tuple2("hive",1));
JavaPairRDD<String, Integer> listRDD = sc.parallelizePairs(list);
List<Tuple2<String, Integer>> result = listRDD.reduceByKey((x, y) -> x + y).collect();
输出: (spark,4) (hive,3)
collect() :以数组的形式返回RDD中的所有元素,收集分布在各个worker的数据到driver节点。
编程要求
根据提示,在右侧编辑器begin-end处补充代码,计算并输出各个学生的总成绩。
("bj",88):bj指学生姓名,88指学生成绩。
测试说明
平台会对你编写的代码进行测试:
预期输出: (bj,254) (sh,221) (gz,285)
package step1;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;
import java.util.*;
public class JStudent {public static void main(String[] args) {SparkConf conf = new SparkConf().setMaster("local").setAppName("JStudent");JavaSparkContext sc = new JavaSparkContext(conf);List<Tuple2<String,Integer>> list = Arrays.asList(new Tuple2("bj",88),new Tuple2("sh",67),new Tuple2("gz",92),new Tuple2("bj",94),new Tuple2("sh",85),new Tuple2("gz",95),new Tuple2("bj",72),new Tuple2("sh",69),new Tuple2("gz",98));//第一步:创建RDDJavaPairRDD<String, Integer> listRDD = sc.parallelizePairs(list);//第二步:把相同key的进行聚合JavaPairRDD<String, Integer> result = listRDD.reduceByKey((x, y) -> x + y);//第三步:收集List<Tuple2<String, Integer>> collect = result.collect();//第四步:输出for (Tuple2 c:collect){System.out.println(c);}sc.stop();}
}
读取外部数据集创建RDD
任务描述
本关任务:读取文本文件,按照文本中数据,输出老师及其出现次数。
相关知识
为了完成本关任务,你需要掌握:1.读取文件创建RDD,2.本关所需算子。
读取文件
textFile()
JavaRDD<String> rdd = sc.textFile("/home/student.txt")//文件路径
算子
(1)mapToPair:此函数会对一个RDD中的每个元素调用f函数,其中原来RDD中的每一个元素都是T类型的,调用f函数后会进行一定的操作把每个元素都转换成一个<K2,V2>类型的对象
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(1);
list.add(2);
list.add(3);
JavaRDD<Integer> rdd = sc.parallelize(list);
JavaPairRDD<Integer,String> result = rdd.mapToPair(x -> new Tuple2(x,1)
输出:(1,1)(2,1)(3,1)
(2) reduceByKey() :对元素为RDD[K,V]对的RDD中Key相同的元素的Value进行聚合
List<Tuple2<String,Integer>> list = Arrays.asList(new Tuple2("hive",2),new Tuple2("spark",4),new Tuple2("hive",1));
JavaPairRDD<String, Integer> listRDD = sc.parallelizePairs(list);
List<Tuple2<String, Integer>> result = listRDD.reduceByKey((x, y) -> x + y).collect();
输出: (spark,5) (hive,3)
编程要求
根据提示,在右侧编辑器begin-end处补充代码,输出老师姓名和出现次数。
- 输入文件样例:
bigdata,laozhang bigdata,laoduan javaee,xiaoxu
bigdata指科目,laozhang指老师名称。
预期输出: (laoliu,1) (laoli,3) (laoduan,5) (laozhang,2) (laozhao,15) (laoyang,9) (xiaoxu,4)
package step2;import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;import java.util.Arrays;
import java.util.List;public class JTeachers {public static void main(String[] args) {SparkConf conf = new SparkConf().setMaster("local").setAppName("JTeachers");JavaSparkContext sc = new JavaSparkContext(conf);String dataFile = "file:///root/step2_files";//第一步:以外部文件方式创建RDDJavaRDD<String> teaRDD = sc.textFile(dataFile);//String name = line.split(",")[1];//第二步:将文件中每行的数据切分,得到自己想要的返回值Integer one = 1;JavaPairRDD<String, Integer> teacher = teaRDD.mapToPair(line ->{String names = line.split(",")[1];Tuple2<String, Integer> t2 = new Tuple2<>(names, one);return t2;});//第三步:将相同的key进行聚合JavaPairRDD<String, Integer> tea = teacher.reduceByKey((x, y) -> x + y);//第四步:将结果收集起来List<Tuple2<String, Integer>> result = tea.collect();//第五步:输出for (Tuple2 t:result){System.out.println(t);}sc.stop();}
}
map算子完成转换操作
相关知识
为了完成本关任务,你需要掌握:如何使用map算子。
map
将原来RDD的每个数据项通过map中的用户自定义函数f映射转变为一个新的元素。

图中每个方框表示一个RDD分区,左侧的分区经过自定义函数f:T->U映射为右侧的新RDD分区。但是,实际只有等到Action算子触发后,这个f函数才会和其他函数在一个Stage中对数据进行运算。
map 案例
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
System.out.println("init:" + list);
JavaRDD<Integer> rdd = sc.parallelize(list);
JavaRDD<Integer> map = rdd.map(x -> x * 2);
System.out.println("result :" + map.collect());
输出:
init :[1, 2, 3, 4, 5, 6] result :[2, 4, 6, 8, 10, 12]

说明:rdd1的元素(1 , 2 , 3 , 4 , 5 , 6)经过map算子(x -> x*2)转换成了rdd2(2 , 4 , 6 , 8 , 10)
编程要求
根据提示,在右侧编辑器begin-end处补充代码,完成以下需求:
需求1:使用map算子,将rdd的数据(1, 2, 3, 4, 5)按照下面的规则进行转换操作,规则如下:
-
偶数转换成该数的平方;
-
奇数转换成该数的立方。
需求2:使用map算子,将rdd的数据("dog", "salmon", "salmon", "rat", "elephant")按照下面的规则进行转换操作,规则如下:
- 将字符串与该字符串的长度组合成一个元组,例如
dog --> (dog,3)salmon --> (salmon,6)package net.educoder; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import scala.Tuple2; import java.util.Arrays; import java.util.List; public class Step1 {private static SparkConf conf;private static JavaSparkContext sc;static {conf = new SparkConf().setAppName("Step1").setMaster("local");sc = new JavaSparkContext(conf);}/*** 返回JavaRDD** @return JavaRDD*/public static JavaRDD<Integer> MapRdd() {List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);JavaRDD<Integer> rdd = sc.parallelize(list);/**** 需求:使用map算子,将rdd的数据进行转换操作* 规则如下:* 偶数转换成该数的平方* 奇数转换成该数的立方**//********** begin ***********/JavaRDD<Integer> map = rdd.map(num -> {if (num % 2 == 0) {return num * num;} else {return num * num * num;}});return map;/********** end ***********/}/*** 返回JavaRDD** @return JavaRDD*/public static JavaRDD<Tuple2> MapRdd2() {List<String> list = Arrays.asList("dog", "salmon", "salmon", "rat", "elephant");JavaRDD<String> rdd = sc.parallelize(list);/**** 需求:使用map算子,将rdd的数据进行转换操作* 规则如下:* 将字符串与该字符串的长度组合成一个元组,例如:dog --> (dog,3),salmon --> (salmon,6)**//********** begin ***********/JavaRDD<Tuple2> map = rdd.map(str -> {int i = str.length();return new Tuple2(str, i);});return map;/********** end ***********/} }
相关文章:
Spark-java版
SparkContext初始化 相关知识 SparkConf 是SparkContext的构造参数,储存着Spark相关的配置信息,且必须指定Master(比如Local)和AppName(应用名称),否则会抛出异常;SparkContext 是程序执行的入口…...
RabbitMQ消息模型之Work Queues
Work Queues Work Queues,也被称为(Task Queues),任务模型,也是官网给出的第二个模型,使用的交换机类型是直连direct,也是默认的交换机类型。当消息处理比较耗时的时候,可能生产消息…...
vue3+ts 实现时间间隔选择器
需求背景解决效果视频效果balancedTimeElement.vue 需求背景 实现一个分片的时间间隔选择器,需要把显示时间段显示成图表,涉及一下集中数据转换 [“02:30-05:30”,“07:30-10:30”,“14:30-17:30”]‘[(2,5),(7,10),(14,17)]’[4, 5, 6, 7, 8, 9, 10, …...
PTA 魔法优惠券
7-83 魔法优惠券 分数 25 全屏浏览题目 作者 陈越 单位 浙江大学 在火星上有个魔法商店,提供魔法优惠券。每个优惠劵上印有一个整数面值K,表示若你在购买某商品时使用这张优惠劵,可以得到K倍该商品价值的回报!该商店还免费赠送…...
P8A110-A120经典赛题
Web应用程序SQL Inject安全攻防 任务环境说明: 服务器场景:WebServ2003(用户名:administrator;密码:空)服务器场景操作系统:Microsoft Windows2003 Server 服务器场景安装服务/工…...
文件基础知识
计算机中的流:在C语言中将通过输入/输出设备(键盘、内存、显示器、网络等)之间的数据传输抽象表述为“流”。 1、文本流和二进制流 在文本流中输入输出的数据是一系列的字符,可以被修改在二进制流中输入输出数据是一系列字节&am…...
二叉树OJ题之二
今天我们一起来看一道判断一棵树是否为对称二叉树的题,力扣101题, https://leetcode.cn/problems/symmetric-tree/ 我们首先先来分析这道题,要判断这道题是否对称,我们首先需要判断的是这颗树根节点的左右子树是否对称࿰…...
MySql表中添加emoji表情
共五处需要修改。 语句执行修改: ALTER TABLE xxxxx CONVERT TO CHARACTER SET utf8mb4;...
【新手解答1】深入探索 C 语言:变量名、形参 + 主调函数、被调函数 + 类和对象 + 源文件(.c 文件)、头文件(.h 文件)+ 库
C语言的相关问题解答 写在最前面目录 问题1变量名与变量的关系与区别变量和数据类型形参(形式参数)的概念 问题2解析:主调函数和被调函数延伸解析:主调函数对于多文件程序的理解总结 问题3类和对象变量和数据类型变量是否为抽象的…...
2023最新的软件测试热点面试题(答案+解析)
📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢交流讨论:欢迎加入我们一起学习!📢资源分享:耗时200小时精选的「软件测试」资…...
NCo3.1(08) - Nco3 服务器端编程
本篇博文不再重复ABAP调用外部服务器的基础,只介绍 NCo3 开发的过程和要点。需要了解相关知识点的小伙伴们自行参考: SAP接口编程 之JCo3.0系列(06) - Jco服务器端编程 PyRFC 服务器端编程要点 创建项目 新建一个 Console 项目,选择 .Net …...
【代码随想录】算法训练计划36
贪心 1、435. 无重叠区间 题目: 给定一个区间的集合 intervals ,其中 intervals[i] [starti, endi] 。返回 需要移除区间的最小数量,使剩余区间互不重叠 。 思路: 贪心,重叠个数,和射气球一样,重叠区间…...
Python (十五) 面向对象之多继承问题
程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一波电子书籍资料,包含《Effective Java中文版 第2版》《深入JAVA虚拟机》,《重构改善既有代码设计》,《MySQL高性能-第3版》&…...
广域网加速技术
摘要: 随着企业数字化转型快速发展,越来越多企业将IT系统、应用和服务部署到云上,以实现更高效、灵活的管理和使用。这就对广域网提出了更高的要求,而广域网线路往往存在带宽费用昂贵、服务质量不可靠等问题。为了改善用户体验&am…...
构建智能医患沟通:陪诊小程序开发实战
在医疗科技的浪潮中,陪诊小程序的开发成为改善医患沟通的创新途径之一。本文将介绍如何使用Node.js和Express框架构建一个简单而强大的陪诊小程序,实现患者导诊和医生咨询功能。 1. 安装Node.js和Express 首先确保已安装Node.js,然后使用以…...
插入区间[中等]
优质博文:IT-BLOG-CN 一、题目 给你一个无重叠的 ,按照区间起始端点排序的区间列表。在列表中插入一个新的区间,你需要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间)。 示例 1&#x…...
Android Bitmap 模糊效果实现 (二)
文章目录 Android Bitmap 模糊效果实现 (二)使用 Vukan 模糊使用 RenderEffect 模糊使用 GLSL 模糊RS、Vukan、RenderEffect、GLSL 效率对比 Android Bitmap 模糊效果实现 (二) 本文首发地址 https://blog.csdn.net/CSqingchen/article/details/134656140 最新更新地址 https:/…...
初识Java 18-4 泛型
目录 泛型存在的问题 在泛型中使用基本类型 实现参数化接口 类型转换和警告 无法实现的重载 基类会劫持接口 自限定类型 奇异递归类型 自限定 自限定提供的参数协变性 本笔记参考自: 《On Java 中文版》 泛型存在的问题 接下来讨论的,是在泛型…...
家政保洁预约小程序app开发特点有哪些?
家政预约服务小程序APP开发的特点介绍; 1. 低成本:用户通过手机APP下单,省去了中介费用,降低了雇主的雇佣成本。 2. 高收入:家政服务人员通过手机APP接单,省去了中介费用,从而提高了服务人员的…...
【JavaEE初阶】 HTTP响应报文
文章目录 🌲序言🎍200 OK🍀404 Not Found🎄403 Forbidden🌴405 Method Not Allowed🎋500 Internal Server Error🌳504 Gateway Timeout🌲302 Move temporarily🎍301 Move…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
