软著项目推荐 深度学习 植物识别算法系统
文章目录
- 0 前言
- 2 相关技术
- 2.1 VGG-Net模型
- 2.2 VGG-Net在植物识别的优势
- (1) 卷积核,池化核大小固定
- (2) 特征提取更全面
- (3) 网络训练误差收敛速度较快
- 3 VGG-Net的搭建
- 3.1 Tornado简介
- (1) 优势
- (2) 关键代码
- 4 Inception V3 神经网络
- 4.1 网络结构
- 5 开始训练
- 5.1 数据集
- 5.2 关键代码
- 5.3 模型预测
- 6 效果展示
- 6.1 主页面展示
- 6.2 图片预测
- 6.3 三维模型可视化
- 7 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 基于深度学习的植物识别算法研究与实现
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:4分
- 工作量:4分
- 创新点:3分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
2 相关技术
2.1 VGG-Net模型
Google DeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神经网络–VGG-
Net。在同年举办的ILSVRC比赛中,该网络结构模型在分类项目中取得了十分出色的成绩,由于其简洁性和实用性,使得其在当时迅速,飞快地成为了最受欢迎的卷积神经网络模型。VGG-
Net卷积神经网络在近年来衍生出了A-
E七种不同的层次结构,本次研究使用其中的D结构,也就是VGG-16Net结构,该结构中包含了13个卷积层,5个池化层和3个全连接层。针对所有的卷积层,使用相同的5x5大小的卷积核,针对所有的池化层,使用相同的3x3大小的池化核。VGG-
Net结构如图所示。
2.2 VGG-Net在植物识别的优势
在针对植物识别问题上,VGG-Net有着一些相较于其他神经网络的优势,主要包括以下几点:
(1) 卷积核,池化核大小固定
网络中所有的卷积核大小固定为3x3,所有的池化核大小固定为5x5。这样在进行卷积和池化操作的时候,从数据中提取到的特征更加明显,同时在层与层的连接时,信息的丢失会更少,更加方便后续对于重要特征的提取和处理。
(2) 特征提取更全面
VGG-
Net网络模型中包含了13个卷积层。卷积层数目越多,对于特征的提取更加的全面。由于需要对于植物的姿态、颜色等进行判定,植物的特征较多,需要在提取时更加的全面,细致,才有可能得到一个更加准确的判定。VGG-
Net符合条件。
(3) 网络训练误差收敛速度较快
VGG-
Net网络在训练时收敛速度相对较快,能够较快地得到预期的结果。具有这一特点的原因有两个,一个是网络中每一个卷积层和池化层中的卷积核大小与池化核大小固定,另一个就是对于各个隐藏层的参数初始化方法使用专门针对ReLU激活函数的Kaiming正态初始化方法。
3 VGG-Net的搭建
本次研究基于Pytorch深度学习框架进行网络的搭建,利用模块化的设计思想,构建一个类,来对于整个的网络进行结构上的封装。这样搭建的好处是可以隐藏实现的内部细节,提高代码的安全性,增强代码的复用效率,并且对于一些方法,通过在内部集成,可以方便之后对于其中方法的调用,提升代码的简洁性。
在网络搭建完成后,将数据集传入网络中进行训练,经过一段时间后即可得到植物识别的分类识别结果。
3.1 Tornado简介
Tornado全称Tornado Web
Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使用,被Facebook收购以后框架在2009年9月以开源软件形式开放给大众。
(1) 优势
- 轻量级web框架
- 异步非阻塞IO处理方式
- 出色的抗负载能力
- 优异的处理性能,不依赖多进程/多线程,一定程度上解决C10K问题
- WSGI全栈替代产品,推荐同时使用其web框架和HTTP服务器
(2) 关键代码
class MainHandler(tornado.web.RequestHandler):def get(self):self.render("index.html")def post(self):keras.backend.clear_session()img = Image.open(BytesIO(self.request.files['image'][0]['body']))img = imgb_img = Image.new('RGB', (224, 224), (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = 224 / size[0]new_size = (224, int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, 224 - new_size[1])))else:rate = 224 / size[1]new_size = (int(size[0] * rate), 224)img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, 224 - new_size[0]), 0))if self.get_argument("method", "mymodel") == "VGG16":Model = load_model("VGG16.h5")else:Model = load_model("InceptionV3.h5")data = orc_img(Model,b_img)self.write(json.dumps({"code": 200, "data": data}))def make_app():template_path = "templates/"static_path = "./static/"return tornado.web.Application([(r"/", MainHandler),], template_path=template_path, static_path=static_path, debug=True)def run_server(port=8000):tornado.options.parse_command_line()app = make_app()app.listen(port)print("\n服务已启动 请打开 http://127.0.0.1:8000 ")tornado.ioloop.IOLoop.current().start()
4 Inception V3 神经网络
GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception
的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception
V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。
4.1 网络结构
inception结构的作用(inception的结构和作用)
作用:代替人工确定卷积层中过滤器的类型或者确定是否需要创建卷积层或者池化层。即:不需要人为决定使用什么过滤器,是否需要创建池化层,由网络自己学习决定这些参数,可以给网络添加所有可能值,将输入连接起来,网络自己学习需要它需要什么样的参数。
inception主要思想
用密集成分来近似最优的局部稀疏解(如上图)
- 采用不同大小的卷积核意味着有不同大小的感受野,最后的拼接意味着不同尺度特征的融合。
- 之所以卷积核大小采用1x1、3x3和5x5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定padding = 0、1、2,采用same卷积可以得到相同维度的特征,然后这些特征直接拼接在一起。
- 很多地方都表明pooling挺有效,所以Inception里面也嵌入了pooling。
- 网络越到后面特征越抽象,且每个特征涉及的感受野也更大,随着层数的增加,3x3和5x5卷积的比例也要增加。
- 最终版inception,加入了1x1 conv来降低feature map厚度。
5 开始训练
5.1 数据集
训练图像按照如下方式进行分类,共分为9文件夹。
5.2 关键代码
from keras.utils import Sequenceimport mathclass SequenceData(Sequence):def __init__(self, batch_size, target_size, data):# 初始化所需的参数self.batch_size = batch_sizeself.target_size = target_sizeself.x_filenames = datadef __len__(self):# 让代码知道这个序列的长度num_imgs = len(self.x_filenames)return math.ceil(num_imgs / self.batch_size)def __getitem__(self, idx):# 迭代器部分batch_x = self.x_filenames[idx * self.batch_size: (idx + 1) * self.batch_size]imgs = []y = []for x in batch_x:img = Image.open(x)b_img = Image.new('RGB', self.target_size, (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = self.target_size[0] / size[0]new_size = (self.target_size[0], int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, self.target_size[0] - new_size[1])))else:rate = self.target_size[0] / size[1]new_size = (int(size[0] * rate), self.target_size[0])img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, self.target_size[0] - new_size[0]), 0))img = b_imgif random.random() < 0.1:img = img.convert("L").convert("RGB")if random.random() < 0.2:img = img.rotate(random.randint(0, 20)) # 随机旋转一定角度if random.random() < 0.2:img = img.rotate(random.randint(340, 360)) # 随 旋转一定角度imgs.append(img.convert("RGB"))x_arrays = 1 - np.array([np.array(i) for i in imgs]).astype(float) / 255 # 读取一批图片batch_y = to_categorical(np.array([labels.index(x.split("/")[-2]) for x in batch_x]), len(labels))return x_arrays, batch_y
5.3 模型预测
利用我们训练好的 vgg16.h5 模型进行预测,相关代码如下:
def orc_img(model,image):img =np.array(image)img = np.array([1 - img.astype(float) / 255])predict = model.predict(img)index = predict.argmax()print("CNN预测", index)target = target_name[index]index2 = np.argsort(predict)[0][-2]target2 = target_name[index2]index3 = np.argsort(predict)[0][-3]target3 = target_name[index3]return {"target": target,"predict": "%.2f" % (float(list(predict)[0][index]) * 64),"target2": target2,"predict2": "%.2f" % (float(list(predict)[0][index2]) * 64),}
6 效果展示
6.1 主页面展示
6.2 图片预测
6.3 三维模型可视化
学长在web页面上做了一个三维网络结构可视化功能,可以直观的看到网络模型结构
7 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:

软著项目推荐 深度学习 植物识别算法系统
文章目录 0 前言2 相关技术2.1 VGG-Net模型2.2 VGG-Net在植物识别的优势(1) 卷积核,池化核大小固定(2) 特征提取更全面(3) 网络训练误差收敛速度较快 3 VGG-Net的搭建3.1 Tornado简介(1) 优势(2) 关键代码 4 Inception V3 神经网络4.1 网络结构 5 开始训练5.1 数据集…...
自动驾驶HWP 功能规范
目 录 概述 1 目的 1范围 1术语及缩写 1设计与实验标准 1 设计标准 2设计标准执行优先顺序 2功能规范 Specification 4 功能描述 Functional Description 4 工作条件与应用范围 Application Scope 4道路交通 4天气与光线 4传感器方案及需求 5 驾驶员状态监控系统 5前视摄像…...

Ubuntu 环境下 NFS 服务安装及配置使用
需求:公司内部有多台物理服务器,需要A服务器上的文件让B服务器访问,也就是两台服务器共享文件,当然也可以对A服务器上的文件做权限管理,让B服务器只读或者可读可写 1、NFS 介绍 NFS 是 Network FileSystem 的缩写&…...

vue.js如何根据后台返回来的图片url进行图片下载
原创/朱季谦 最近在做一个前端vue.js对接的功能模块时,需要实现一个下载图片的功能,后台返回来的是一串图片url,试了很多种方法,发现点击下载时出来的效果,都是跳到一个新的图片网页,后来经过一番琢磨&…...
获取WordPress分类链接
CMS模板主题首页多以分类列表的形式展示内容,一般需要在适当位置添加某分类归档页面链接的按钮,下面的代码可以帮你实现。 代码一、通过分类别名获取Wordpress分类链接: <?php $catget_category_by_slug(‘wordpress’); $cat_linksget_…...

<Linux>(极简关键、省时省力)《Linux操作系统原理分析之Linux 进程管理 5》(9)
《Linux操作系统原理分析之Linux 进程管理 5》(9) 4 Linux 进程管理4.5 Linux 信号4.5.1 信号的作用和种类1.信号机制2.信号种类 4.5.2 信号的处理4.5.3 信号处理函数1.数据结构2. 处理函数 signal3.程序例 4 Linux 进…...

Anthropic推出Claude 2.1聊天机器人;使用AI工具写作:挑战与策略
🦉 AI新闻 🚀 Anthropic推出Claude 2.1聊天机器人,支持20万个Token输入和提高准确度 摘要:Anthropic推出了Claude 2.1聊天机器人及对应的AI模型,支持输入多达20万个Token,并在准确度上有所改善。Claude已…...

2023-11-30 LeetCode每日一题(确定两个字符串是否接近)
2023-11-30每日一题 一、题目编号 1657. 确定两个字符串是否接近二、题目链接 点击跳转到题目位置 三、题目描述 如果可以使用以下操作从一个字符串得到另一个字符串,则认为两个字符串 接近 : 操作 1:交换任意两个 现有 字符。 例如&…...

进程间通信基础知识【Linux】——上篇
目录 一,理解进程之间的通信 1. 进程间通信目的 2. 进程间通信的技术背景 3,常见的进程间通信 二,管道 1. 尝试建立一个管道 管道的特点: 管道提供的访问控制: 2. 扩展:进程池 阶段一:…...

OpenSSH(CVE-2023-38408)OpenSsh9.5一键升级修复
yum install -y git cd /root git clone https://gitee.com/qqmiller/openssh-9.5p1-.x86_64.git cd openssh-9.5p1-.x86_64/ bash openssh_update.sh重启sshd: systemctl restart sshd 查看sshd状态: systemctl status sshd 重要的是按此操作升级完成…...

10.30 作业 C++
设计一个Per类,类中包含私有成员:姓名、年龄、指针成员身高、体重,再设计一个Stu类,类中包含私有成员:成绩、Per类对象p1,设计这两个类的构造函数、析构函数和拷贝构造函数。 #include <iostream>using namespace std;clas…...

Python开发运维:PyMongo 连接操作 MongoDB
目录 一、理论 1.PyMongo模块 2.Mongo Shell 二、实验 1. Windows11安装MongoDB 7.0.4 2.Windows11安装MongoDB Shell 2.1.0 3.PyMongo 连接 MongoDB(无密码方式) 4.PyMongo 连接 MongoDB(有密码方式) 5.PyMongo 操作 Mo…...
【Github】本地管理github分支
本地管理github分支 学习一些开发tips。以下是万能的GPT教我的: 以下是一套基本的本地管理 GitHub 仓库的指令集。在执行这些指令之前,请确保已经在你的本地机器上安装了 Git 工具,并且已经在 GitHub 上创建了一个仓库。 克隆仓库࿱…...

Spring Boot 项目中读取 YAML 文件中的数组、集合和 HashMap
在 Spring Boot 项目中,我们经常使用 YAML 文件来配置应用程序的属性。在这篇博客中,我将模拟如何在 Java 的 Spring Boot 项目中读取 YAML 文件中的数组、集合和 HashMap。 1. 介绍 YAML(YAML Aint Markup Language)是一种人类…...

Python正则表达式:match()和search()函数全面解读
更多资料获取 📚 个人网站:ipengtao.com 在Python中,正则表达式是强大的工具,能够用于文本匹配、搜索和替换。re模块提供了许多函数来处理正则表达式,其中match()和search()是两个常用的函数。本文将深入探讨这两个函…...

AIGC ChatGPT4总结Linux Shell命令集合
在Linux中,Shell命令的数量非常庞大,因为Linux提供了各种各样的命令来处理系统任务。这些命令包括GNU核心工具集、系统命令、shell内置命令以及通过安装获得的第三方应用程序命令。以下是一些常见的Linux命令分类及其示例,但请注意,这不是一个全面的列表,因为列出所有命令…...
力扣labuladong——一刷day61
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、力扣865. 具有所有最深节点的最小子树二、力扣1123. 最深叶节点的最近公共祖先三、力扣1026. 节点与其祖先之间的最大差值四、力扣1120. 子树的最大平均值 …...

nacos配置变更导致logback日志异常
问题背景: 线上的服务突然内存爆满,查服务器突然发现,日志全部打印到了/tmp/tomcat.xxx.port目录下,后来对应操作时间,和nacos修改配置是同一时间发生的,但是疑惑的点是,nacos配置变更为什么会引起logback的…...

【spring(五)】SpringMvc总结 SSM整合流程
目录 一、SpringMVC简介: 二、SpringMVC快速入门: 三、SpringMVC bean的管理:⭐ ①配置bean ②扫描bean 四、SpringMVC配置类:⭐ 五、SpringMVC 请求与响应 六、SpringMVC REST风格 七、SSM整合 异常处理: 八、…...

1、windows10系统下Qt5.12.0与卸载
一、安装包下载 1、Qt社区下载 https://download.qt.io/archive/qt/5.12/5.12.10/qt-opensource-windows-x86-5.12.10.exe 2、百度网盘下载 链接:百度网盘 请输入提取码 3、Qt官网下载: Try Qt | 开发应用程序和嵌入式系统 | Qt 二、安装提示 下…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...

什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...

iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...

Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)
+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...