当前位置: 首页 > news >正文

时间序列预测实战(二十一)PyTorch实现TCN卷积进行时间序列预测(专为新手编写的自研架构)

  


一、本文介绍

本篇文章给大家带来的是利用我个人编写的架构进行TCN时间序列卷积进行时间序列建模(专门为了时间序列领域新人编写的架构,简单不同于市面上大家用GPT写的代码),包括结果可视化、支持单元预测、多元预测、模型拟合效果检测、预测未知数据、以及滚动长期预测功能。该结构是一个通用架构任何模型嵌入其中都可运行。下面来介绍一下TCN时间序列卷积的基本原理:时间序列卷积(Temporal Convolutional Network, TCN)通过一系列卷积层处理数据,每个层都能捕捉到不同时间范围内的模式,其主要通过以下三个操作因果卷积、扩张卷积、残差链接,三个操作来进行预测功能的实现。 

  专栏目录:时间序列预测目录:深度学习、机器学习、融合模型、创新模型实战案例

专栏: 时间序列预测专栏:基础知识+数据分析+机器学习+深度学习+Transformer+创新模型

预测功能效果展示(不是测试集是预测未知数据)->

损失截图(损失这里我就没有画图直接打印下来了很直观)-> 

根据损失来看模型的拟合效果还是很好的,但后面还是做了检验模型拟合效果的功能让大家真正的评估模型的效果。

 

检验模型拟合情况->

(从下面的图片可以看出模型拟合的情况很好) 

 

目录

一、本文介绍

二、TCN的框架原理

2.1 TCN的主要思想

2.2 因果卷积

2.3  扩张卷积

2.4 无便宜填充

三、数据集介绍

四、参数讲解 

五、完整代码

六、训练模型 

七、预测结果

7.1 预测未知数据效果图

7.2 测试集效果图 

7.3 CSV文件生成效果图 

7.4 检验模型拟合效果图

八、全文总结


二、TCN的框架原理

2.1 TCN的主要思想

TCN,即Temporal Convolutional Network,是一种专门用于时间序列数据处理的神经网络架构。TCN的关键特点包括:

1. 因果卷积:TCN使用因果卷积来确保在预测未来值时,只会使用当前和过去的信息,而不会出现信息泄露。

2. 扩张卷积:通过扩张卷积,TCN可以在不丢失时间分辨率的情况下增加感受野(即模型可以观察到的历史信息范围)。扩张卷积通过间隔地应用卷积核来实现。

3. 无偏移填充:为了保持输出的时间长度与输入相同,TCN在卷积操作前使用了一种特殊的填充方式。

下图是时间序列卷积的示意图

下面我来分别介绍这几种机制->

 


2.2 因果卷积

什么是因果卷积?首先我们来确定这个问题

  • 因果关系意味着输出序列中的元素只能依赖于输入序列中它前面的元素。
  • 为了确保输出张量与输入张量具有相同的长度,我们需要进行零填充。
  • 如果我们只用零填充输入张量的左侧,那么因果卷积是有保证的。
  • x_{4}^{'}在下图中是通过组合生成的x_{2},x_{3}​,x_{4}确保不会泄露信息。

此操作生成x_{5}^{'}x_{6}^{'}它们是无关的,应该在将输出传递到下一层之前删除。

TCN有两个基本原则:

  • 序列的输入和输出长度保持不变。
  • 过去不能有任何泄漏。

为了达到第一点,TCN利用了第二点,TCN利用了因果卷积。1D FCN ( Fully Convolutional Network)


2.3  扩张卷积

扩张卷积的工作原理

  1. 增加感受野:在标准的卷积中,卷积核覆盖的区域是连续的。扩张卷积通过在卷积核的各个元素之间插入空格(称为“扩张”)来扩大其覆盖区域。例如,一个扩张率为2的3x3卷积核实际上会覆盖一个5x5的区域,但只使用9个权重。

  2. 保持时间分辨率:与池化操作不同,扩张卷积不会减少数据的时间维度。这意味着输出数据在时间上的分辨率保持不变,这对于时间序列分析和音频处理等领域至关重要。

  3. 间隔应用:扩张卷积通过间隔地应用卷积核来实现其效果。这种间隔方式意味着卷积核可以跨越更大的区域,而不是只聚焦于紧邻的输入单元。

扩张卷积在TCN中的应用

在时间卷积网络(TCN)中,扩张卷积允许模型有效地处理长时间序列。通过增大感受野,TCN可以捕捉到更长范围内的依赖关系,这对于许多序列预测任务(如语音识别、自然语言处理等)非常有用。此外,扩张卷积的使用使得TCN在处理长序列时计算效率更高,因为它避免了重复计算和不必要的参数增加。

 


2.4 无便宜填充

无偏移填充在时间卷积网络(TCN)中的使用是为了保持输出序列的时间长度与输入序列相同,从而允许模型在处理序列数据时保持时间对齐。在传统的卷积操作中,通常会因为卷积核覆盖的范围而导致输出序列的长度减少。为了解决这个问题,TCN采用了无偏移填充的策略。

无偏移填充(Zero Padding)的工作原理

  1. 填充操作:无偏移填充是指在输入序列的开始部分添加适量的零值,以使得卷积操作后的输出序列长度不减少。这种填充方式通常用于时间序列的处理中,确保经过卷积后,时间维度上的长度保持不变。

  2. 保持时间对齐:在处理时间序列数据时,保持时间上的对齐非常重要,尤其是在预测未来事件或者在时间序列上做分类任务时。无偏移填充确保了输入和输出在时间维度上保持对齐。

  3. 防止信息丢失:在没有填充的情况下,卷积操作可能会导致序列边缘的信息丢失,因为卷积核无法完全覆盖这些区域。通过使用无偏移填充,可以保证序列的每个部分都被卷积核等同地处理。

在TCN中的应用

在TCN中,无偏移填充通常与扩张卷积结合使用。通过在卷积层之前适当地添加零值,可以保证即使在使用较大扩张率的情况下,输出序列的长度也与输入序列的长度相同。这样不仅保留了时间序列数据的完整性,还允许模型捕捉到长距离的依赖关系,提高模型对时间序列数据的处理能力。


三、数据集介绍

本文是实战讲解文章,上面主要是简单讲解了一下网络结构比较具体的流程还是很复杂的涉及到很多的数学计算,下面我们来讲一讲模型的实战内容,第一部分是我利用的数据集。

本文我们用到的数据集是ETTh1.csv,该数据集是一个用于时间序列预测的电力负荷数据集,它是 ETTh 数据集系列中的一个。ETTh 数据集系列通常用于测试和评估时间序列预测模型。以下是 ETTh1.csv 数据集的一些内容:

数据内容该数据集通常包含有关电力系统的多种变量,如电力负荷、价格、天气情况等。这些变量可以用于预测未来的电力需求或价格。

时间范围和分辨率数据通常按小时或天记录,涵盖了数月或数年的时间跨度。具体的时间范围和分辨率可能会根据数据集的版本而异。 

以下是该数据集的部分截图->

 


四、参数讲解 

    parser.add_argument('-model', type=str, default='TCN', help="模型持续更新")parser.add_argument('-window_size', type=int, default=128, help="时间窗口大小, window_size > pre_len")parser.add_argument('-pre_len', type=int, default=24, help="预测未来数据长度")# dataparser.add_argument('-shuffle', action='store_true', default=True, help="是否打乱数据加载器中的数据顺序")parser.add_argument('-data_path', type=str, default='ETTh1-Test.csv', help="你的数据数据地址")parser.add_argument('-target', type=str, default='OT', help='你需要预测的特征列,这个值会最后保存在csv文件里')parser.add_argument('-input_size', type=int, default=7, help='你的特征个数不算时间那一列')parser.add_argument('-output_size', type=int, default=1, help='输出特征个数只有两种选择和你的输入特征一样即输入多少输出多少,另一种就是多元预测单元')parser.add_argument('-feature', type=str, default='MS', help='[M, S, MS],多元预测多元,单元预测单元,多元预测单元')parser.add_argument('-model_dim', type=list, default=[64, 128, 256], help='这个地方是这个TCN卷积的关键部分,它代表了TCN的层数我这里输''入list中包含三个元素那么我的TCN就是三层,这个根据你的数据复杂度来设置''层数越多对应数据越复杂但是不要超过5层')# learningparser.add_argument('-lr', type=float, default=0.001, help="学习率")parser.add_argument('-drop_out', type=float, default=0.05, help="随机丢弃概率,防止过拟合")parser.add_argument('-epochs', type=int, default=20, help="训练轮次")parser.add_argument('-batch_size', type=int, default=32, help="批次大小")parser.add_argument('-save_path', type=str, default='models')# modelparser.add_argument('-hidden_size', type=int, default=64, help="隐藏层单元数")parser.add_argument('-kernel_sizes', type=int, default=3)parser.add_argument('-laryer_num', type=int, default=1)# deviceparser.add_argument('-use_gpu', type=bool, default=False)parser.add_argument('-device', type=int, default=0, help="只设置最多支持单个gpu训练")# optionparser.add_argument('-train', type=bool, default=True)parser.add_argument('-predict', type=bool, default=True)parser.add_argument('-inspect_fit', type=bool, default=True)parser.add_argument('-lr-scheduler', type=bool, default=True)

为了大家方便理解,文章中的参数设置我都用的中文,所以大家应该能够更好的理解。下面我在进行一遍讲解。 

参数名称参数类型参数讲解
1modelstr模型名称
2window_sizeint时间窗口大小,用多少条数据去预测未来的数据

3

pre_lenint预测多少条未来的数据
4shufflestore_true是否打乱输入dataloader中的数据,不是数据的顺序

5

data_pathstr你输入数据的地址
6targetstr你想要预测的特征列

7

input_sizeint输入的特征数不包含时间那一列!!!
8output_sizeint输出的特征数只可以是1或者是等于你输入的特征数

9

featurestr[M, S, MS],多元预测多元,单元预测单元,多元预测单元

10

model_dimlist这个地方是这个TCN卷积的关键部分,它代表了TCN的层数我这里输入list中包含三个元素那么我的TCN就是三层,这个根据你的数据复杂度来设置层数越多对应数据越复杂但是不要超过5层!!!!重点部分
11lrfloat学习率大小

12

drop_out

float丢弃概率
13epochsint训练轮次

14

batch_sizeint批次大小
15svae_pathstr模型的保存路径

16

hidden_sizeint隐藏层大小
17kernel_sizeint卷积核大小

18

layer_numintlstm层数
19use_gpubool是否使用GPU

20

deviceintGPU编号
21trainbool是否进行训练

22

predictbool是否进行预测

23

inspect_fitbool是否进行检验模型
24lr_schdulerbool是否使用学习率计划


五、完整代码

复制粘贴到一个文件下并且按照上面的从参数讲解配置好参数即可运行~(极其适合新手和刚入门的读者)

import argparse
import time
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
# 随机数种子
np.random.seed(0)def plot_loss_data(data):# 使用Matplotlib绘制线图plt.plot(data)# 添加标题plt.title("loss results Plot")# 显示图例plt.legend(["Loss"])class TimeSeriesDataset(Dataset):def __init__(self, sequences):self.sequences = sequencesdef __len__(self):return len(self.sequences)def __getitem__(self, index):sequence, label = self.sequences[index]return torch.Tensor(sequence), torch.Tensor(label)def create_inout_sequences(input_data, tw, pre_len, config):# 创建时间序列数据专用的数据分割器inout_seq = []L = len(input_data)for i in range(L - tw):train_seq = input_data[i:i + tw]if (i + tw + pre_len) > len(input_data):breakif config.feature == 'MS':train_label = input_data[:, -1:][i + tw:i + tw + pre_len]else:train_label = input_data[i + tw:i + tw + pre_len]inout_seq.append((train_seq, train_label))return inout_seqdef calculate_mae(y_true, y_pred):# 平均绝对误差mae = np.mean(np.abs(y_true - y_pred))return maedef create_dataloader(config, device):print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>创建数据加载器<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<")df = pd.read_csv(config.data_path)  # 填你自己的数据地址,自动选取你最后一列数据为特征列 # 添加你想要预测的特征列pre_len = config.pre_len  # 预测未来数据的长度train_window = config.window_size  # 观测窗口# 将特征列移到末尾target_data = df[[config.target]]df = df.drop(config.target, axis=1)df = pd.concat((df, target_data), axis=1)cols_data = df.columns[1:]df_data = df[cols_data]# 这里加一些数据的预处理, 最后需要的格式是pd.seriestrue_data = df_data.values# 定义标准化优化器scaler_train = StandardScaler()scaler_valid = StandardScaler()scaler_test = StandardScaler()train_data = true_data[int(0.3 * len(true_data)):]valid_data = true_data[int(0.15 * len(true_data)):int(0.30 * len(true_data))]test_data = true_data[:int(0.15 * len(true_data))]print("训练集尺寸:", len(train_data), "测试集尺寸:", len(test_data), "验证集尺寸:", len(valid_data))# 进行标准化处理train_data_normalized = scaler_train.fit_transform(train_data)test_data_normalized = scaler_test.fit_transform(test_data)valid_data_normalized = scaler_valid.fit_transform(valid_data)# 转化为深度学习模型需要的类型Tensortrain_data_normalized = torch.FloatTensor(train_data_normalized).to(device)test_data_normalized = torch.FloatTensor(test_data_normalized).to(device)valid_data_normalized = torch.FloatTensor(valid_data_normalized).to(device)# 定义训练器的的输入train_inout_seq = create_inout_sequences(train_data_normalized, train_window, pre_len, config)test_inout_seq = create_inout_sequences(test_data_normalized, train_window, pre_len, config)valid_inout_seq = create_inout_sequences(valid_data_normalized, train_window, pre_len, config)# 创建数据集train_dataset = TimeSeriesDataset(train_inout_seq)test_dataset = TimeSeriesDataset(test_inout_seq)valid_dataset = TimeSeriesDataset(valid_inout_seq)# 创建 DataLoadertrain_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, drop_last=True)valid_loader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, drop_last=True)print("通过滑动窗口共有训练集数据:", len(train_inout_seq), "转化为批次数据:", len(train_loader))print("通过滑动窗口共有测试集数据:", len(test_inout_seq), "转化为批次数据:", len(test_loader))print("通过滑动窗口共有验证集数据:", len(valid_inout_seq), "转化为批次数据:", len(valid_loader))print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>创建数据加载器完成<<<<<<<<<<<<<<<<<<<<<<<<<<<")return train_loader, test_loader, valid_loader, scaler_train, scaler_test, scaler_validclass Chomp1d(nn.Module):def __init__(self, chomp_size):super(Chomp1d, self).__init__()self.chomp_size = chomp_sizedef forward(self, x):return x[:, :, :-self.chomp_size].contiguous()class TemporalBlock(nn.Module):def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):super(TemporalBlock, self).__init__()self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,stride=stride, padding=padding, dilation=dilation))self.chomp1 = Chomp1d(padding)self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(dropout)self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,stride=stride, padding=padding, dilation=dilation))self.chomp2 = Chomp1d(padding)self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(dropout)self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,self.conv2, self.chomp2, self.relu2, self.dropout2)self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else Noneself.relu = nn.ReLU()self.init_weights()def init_weights(self):self.conv1.weight.data.normal_(0, 0.01)self.conv2.weight.data.normal_(0, 0.01)if self.downsample is not None:self.downsample.weight.data.normal_(0, 0.01)def forward(self, x):out = self.net(x)res = x if self.downsample is None else self.downsample(x)return self.relu(out + res)class TemporalConvNet(nn.Module):def __init__(self, num_inputs, outputs, pre_len, num_channels, kernel_size=2, dropout=0.2):super(TemporalConvNet, self).__init__()layers = []self.pre_len = pre_lennum_levels = len(num_channels)for i in range(num_levels):dilation_size = 2 ** iin_channels = num_inputs if i == 0 else num_channels[i-1]out_channels = num_channels[i]layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,padding=(kernel_size-1) * dilation_size, dropout=dropout)]self.network = nn.Sequential(*layers)self.linear = nn.Linear(num_channels[-1], outputs)def forward(self, x):x = x.permute(0, 2, 1)x = self.network(x)x = x.permute(0, 2, 1)x = self.linear(x)return x[:, -self.pre_len:, :]def train(model, args, device):start_time = time.time()  # 计算起始时间lstm_model = modelloss_function = nn.MSELoss()optimizer = torch.optim.Adam(lstm_model.parameters(), lr=0.005)epochs = args.epochslstm_model.train()  # 训练模式results_loss = []for i in tqdm(range(epochs)):losss = []for seq, labels in train_loader:optimizer.zero_grad()lstm_model.train()optimizer.zero_grad()y_pred = lstm_model(seq)single_loss = loss_function(y_pred, labels)single_loss.backward()optimizer.step()losss.append(single_loss.detach().cpu().numpy())tqdm.write(f"\t Epoch {i + 1} / {epochs}, Loss: {sum(losss) / len(losss)}")results_loss.append(sum(losss) / len(losss))save_loss = []if save_loss:valid_loss = valid(model, args, scaler_valid, valid_loader)# 尚未引入学习率计划后期补上torch.save(lstm_model.state_dict(), 'save_model.pth')time.sleep(0.1)# 保存模型print(f">>>>>>>>>>>>>>>>>>>>>>模型已保存,用时:{(time.time() - start_time) / 60:.4f} min<<<<<<<<<<<<<<<<<<")# plot_loss_data(results_loss)test(model, args, scaler_test, test_loader)return scaler_traindef valid(model, args, scaler, valid_loader):lstm_model = model# 加载模型进行预测lstm_model.load_state_dict(torch.load('save_model.pth'))lstm_model.eval()  # 评估模式losss = []for seq, labels in valid_loader:pred = lstm_model(seq)mae = calculate_mae(pred.detach().numpy().cpu(), np.array(labels.detach().cpu()))  # MAE误差计算绝对值(预测值  - 真实值)losss.append(mae)# print("验证集误差MAE:", losss)return sum(losss)/len(losss)def test(model, args, scaler, test_loader):lstm_model = model# 加载模型进行预测lstm_model.load_state_dict(torch.load('save_model.pth'))lstm_model.eval()  # 评估模式losss = []for seq, labels in test_loader:pred = lstm_model(seq)mae = calculate_mae(pred.detach().cpu().numpy(), np.array(labels.detach().cpu()))  # MAE误差计算绝对值(预测值  - 真实值)losss.append(mae)# 此处缺少一个绘图功能后期补上,检验测试集情况print("测试集误差MAE:", losss)# 检验模型拟合情况
def inspect_model_fit(model, args, train_loader, scaler_train):df = pd.read_csv(args.data_path)df_inverse = df[int(0.3 * len(df)):][['OT']].reset_index(drop=True)scaler_pre = StandardScaler().fit(df_inverse)model = modelmodel.load_state_dict(torch.load('save_model.pth'))model.eval()  # 评估模式results = []labels = []for i in range(len(train_loader)):for seq, label in train_loader:pred = model(seq)[:, 0, :]label = label[:, 0, :]if args.feature == 'M' or args.feature == 'S':pred = scaler_train.inverse_transform(pred.detach().cpu().numpy())label = scaler_train.inverse_transform(label.detach().cpu().numpy())else:pred = scaler_pre.inverse_transform(pred.detach().cpu().numpy())label = scaler_pre.inverse_transform(label.detach().cpu().numpy())for i in range(len(pred)):results.append(pred[i][-1])labels.append(label[i][-1])# 绘制历史数据plt.plot(labels, label='History')# 绘制预测数据# 注意这里预测数据的起始x坐标是历史数据的最后一个点的x坐标plt.plot(results, label='Prediction')# 添加标题和图例plt.title("inspect model fit state")plt.legend()plt.show()def predict(model, args, device, scaler):# 预测未知数据的功能df = pd.read_csv(args.data_path)scaler_data = df[[args.target]][int(0.3 * len(df)):]scaler_pre = StandardScaler().fit(scaler_data)df = df.iloc[:, 1:][-args.window_size:].values  # 转换为nadarrypre_data = scaler.transform(df)tensor_pred = torch.FloatTensor(pre_data).to(device)tensor_pred = tensor_pred.unsqueeze(0)   # 单次预测 , 滚动预测功能暂未开发后期补上model = modelmodel.load_state_dict(torch.load('save_model.pth'))model.eval()  # 评估模式pred = model(tensor_pred)[0]if args.feature == 'M' or args.feature == 'S':pred = scaler.inverse_transform(pred.detach().cpu().numpy())else:pred = scaler_pre.inverse_transform(pred.detach().cpu().numpy())# 假设 df 和 pred 是你的历史和预测数据# 计算历史数据的长度history_length = len(df[:, -1])# 为历史数据生成x轴坐标history_x = range(history_length)# 为预测数据生成x轴坐标# 开始于历史数据的最后一个点的x坐标prediction_x = range(history_length - 1, history_length + len(pred[:, -1]) - 1)# 绘制历史数据plt.plot(history_x, df[:, -1], label='History')# 绘制预测数据# 注意这里预测数据的起始x坐标是历史数据的最后一个点的x坐标plt.plot(prediction_x, pred[:, -1], marker='o', label='Prediction')plt.axvline(history_length - 1, color='red')  # 在图像的x位置处画一条红色竖线# 添加标题和图例plt.title("History and Prediction")plt.legend()if __name__ == '__main__':parser = argparse.ArgumentParser(description='Time Series forecast')parser.add_argument('-model', type=str, default='TCN', help="模型持续更新")parser.add_argument('-window_size', type=int, default=128, help="时间窗口大小, window_size > pre_len")parser.add_argument('-pre_len', type=int, default=24, help="预测未来数据长度")# dataparser.add_argument('-shuffle', action='store_true', default=True, help="是否打乱数据加载器中的数据顺序")parser.add_argument('-data_path', type=str, default='ETTh1-Test.csv', help="你的数据数据地址")parser.add_argument('-target', type=str, default='OT', help='你需要预测的特征列,这个值会最后保存在csv文件里')parser.add_argument('-input_size', type=int, default=7, help='你的特征个数不算时间那一列')parser.add_argument('-output_size', type=int, default=1, help='输出特征个数只有两种选择和你的输入特征一样即输入多少输出多少,另一种就是多元预测单元')parser.add_argument('-feature', type=str, default='MS', help='[M, S, MS],多元预测多元,单元预测单元,多元预测单元')parser.add_argument('-model_dim', type=list, default=[64, 128, 256], help='这个地方是这个TCN卷积的关键部分,它代表了TCN的层数我这里输''入list中包含三个元素那么我的TCN就是三层,这个根据你的数据复杂度来设置''层数越多对应数据越复杂但是不要超过5层')# learningparser.add_argument('-lr', type=float, default=0.001, help="学习率")parser.add_argument('-drop_out', type=float, default=0.05, help="随机丢弃概率,防止过拟合")parser.add_argument('-epochs', type=int, default=20, help="训练轮次")parser.add_argument('-batch_size', type=int, default=32, help="批次大小")parser.add_argument('-save_path', type=str, default='models')# modelparser.add_argument('-hidden_size', type=int, default=64, help="隐藏层单元数")parser.add_argument('-kernel_sizes', type=int, default=3)parser.add_argument('-laryer_num', type=int, default=1)# deviceparser.add_argument('-use_gpu', type=bool, default=False)parser.add_argument('-device', type=int, default=0, help="只设置最多支持单个gpu训练")# optionparser.add_argument('-train', type=bool, default=True)parser.add_argument('-predict', type=bool, default=True)parser.add_argument('-inspect_fit', type=bool, default=True)parser.add_argument('-lr-scheduler', type=bool, default=True)args = parser.parse_args()if isinstance(args.device, int) and args.use_gpu:device = torch.device("cuda:" + f'{args.device}')else:device = torch.device("cpu")train_loader, test_loader, valid_loader, scaler_train, scaler_test, scaler_valid = create_dataloader(args, device)# 实例化模型try:print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始初始化{args.model}模型<<<<<<<<<<<<<<<<<<<<<<<<<<<")model = TemporalConvNet(args.input_size,args.output_size, args.pre_len,args.model_dim, args.kernel_sizes).to(device)print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始初始化{args.model}模型成功<<<<<<<<<<<<<<<<<<<<<<<<<<<")except:print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始初始化{args.model}模型失败<<<<<<<<<<<<<<<<<<<<<<<<<<<")# 训练模型if args.train:print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始{args.model}模型训练<<<<<<<<<<<<<<<<<<<<<<<<<<<")train(model, args, device)if args.inspect_fit:print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始检验{args.model}模型拟合情况<<<<<<<<<<<<<<<<<<<<<<<<<<<")inspect_model_fit(model, args, train_loader, scaler_train)if args.predict:print(f">>>>>>>>>>>>>>>>>>>>>>>>>预测未来{args.pre_len}条数据<<<<<<<<<<<<<<<<<<<<<<<<<<<")predict(model, args, device, scaler_train)plt.show()

 


六、训练模型 

我们配置好所有参数之后就可以开始训练模型了,根据我前面讲解的参数部分进行配置,不懂得可以评论区留言。

 


七、预测结果

7.1 预测未知数据效果图

TCN的预测效果图(这里我只预测了未来24个时间段的值为未来一天的预测值)->

7.2 测试集效果图 

测试集上的表现(这个模型的测试集我还没有画图功能,如有需要请催更)->

如果补充测试集的画图功能应该如下一样。

同时我也可以将输出结果用csv文件保存,但是功能还没有做,我在另一篇informer的文章里实习了这个功能大家如果有需要可以评论区留言,有时间我会移植过来。

7.3 CSV文件生成效果图 

另一篇文章链接->时间序列预测实战(十九)魔改Informer模型进行滚动长期预测(科研版本,结果可视化)

将滚动预测结果生成了csv文件方便大家对比和评估,以下是我生成的csv文件可以说是非常的直观。

 我们可以利用其进行画图从而评估结果-> 

7.4 检验模型拟合效果图

检验模型拟合情况->

(从下面的图片可以看出模型拟合的情况很好) 

 


八、全文总结

 到此本文的正式分享内容就结束了,在这里给大家推荐我的时间序列专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的模型进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏回顾: 时间序列预测专栏——持续复习各种顶会内容——科研必备

如果大家有不懂的也可以评论区留言一些报错什么的大家可以讨论讨论看到我也会给大家解答如何解决!最后希望大家工作顺利学业有成!

相关文章:

时间序列预测实战(二十一)PyTorch实现TCN卷积进行时间序列预测(专为新手编写的自研架构)

一、本文介绍 本篇文章给大家带来的是利用我个人编写的架构进行TCN时间序列卷积进行时间序列建模&#xff08;专门为了时间序列领域新人编写的架构&#xff0c;简单不同于市面上大家用GPT写的代码&#xff09;&#xff0c;包括结果可视化、支持单元预测、多元预测、模型拟合效…...

探索计算机视觉:深度学习与图像识别的融合

探索计算机视觉&#xff1a;深度学习与图像识别的融合 摘 要&#xff1a; 本文将探讨计算机视觉领域中的深度学习技术&#xff0c;并重点关注图像识别方面的应用。我们将介绍卷积神经网络&#xff08;CNN&#xff09;的原理、常用的图像数据集以及图像识别的实际应用场景&…...

屏蔽WordPress评论中长URL地址方法

由于WordPress是比较常见的CMS程序之一&#xff0c;所以很多网络营销推广也会基于WP去群发外链和广告信息。这里&#xff0c;我们可以通过屏蔽特定关键字、屏蔽特定字符的方式&#xff0c;或者是屏蔽评论内容的长短来限制评论。还有一个我们可以通过评论内容的URL地址的长度来屏…...

【教程】 一文部署配置并入门 Redis

综述 什么是Redis Redis官网——Redis.io Redis, 作为一个高性能的键值对数据库&#xff0c;主要应用于以下场景&#xff1a; 缓存系统&#xff1a;由于其高速读写能力&#xff0c;Redis 非常适合用作缓存系统&#xff0c;减少数据库负载。 会话存储&#xff08;Session St…...

数据被锁住了?如何应对.mkp病毒的攻击

导言&#xff1a; 在数字时代的舞台上&#xff0c;.mkp勒索病毒如幽灵般悄然崭露头角&#xff0c;威胁着无数个体和组织的数据安全。本文将深度挖掘.mkp勒索病毒的狡猾本质&#xff0c;并为你揭示应对感染的独特方法&#xff0c;以及如何巧妙规避这个数字威胁。 如果您在面对被…...

【Shell】Shell基础学习

一、shell脚本 (1)第一个shell脚本 #!/bin/bash #this is a comment echo "hello world"一个shell脚本永远以“#!”开头,这是一个脚本开始的标记,它是告诉系统执行这个文件需要用某个解释器,后面的/bin/bash就是指明解释器的具体位置。 “#”开头是注释 …...

python文件读取

相对路径 读文件 打印txt文件 fopen(".\data.txt","r",encoding"utf-8") contentf.read() print(content) f.close()with open(".\data.txt","r",encoding"utf-8") as f:contentf.read()print(content)contentf…...

第16关 革新云计算:如何利用弹性容器与托管K8S实现极速服务POD扩缩容

------> 课程视频同步分享在今日头条和B站 天下武功&#xff0c;唯快不破&#xff01; 大家好&#xff0c;我是博哥爱运维。这节课给大家讲下云平台的弹性容器实例怎么结合其托管K8S&#xff0c;使用混合服务架构&#xff0c;带来极致扩缩容快感。 下面是全球主流云平台弹…...

算法通关村第十二关|黄金挑战|最长公共前缀字符串压缩

1.最长公共前缀 原题&#xff1a;力扣14. 1.从前到后比较每个字符串的同一个位置。 public String longestCommonPrefix(String[] strs) {if (strs null || strs.length 0) {return "";}int length strs[0].length();int count strs.length;for (int i 0; i …...

池式组件 ----- Mysql连接池的原理实现

前言 本文是mysql连接池的实现。学完mysql连接池之后&#xff0c;接下来会结合多线程来进行测试&#xff0c;看看使用连接池性能高&#xff0c;还是不要连接池性能高&#xff0c;具体能差多少。当然这是下一篇文章了哈哈哈哈哈。当前首要任务是学会连接池&#xff0c;会都不会…...

1.自动化运维工具Ansible的安装

1.物料准备 四台服务器&#xff0c;其中一个是主控机&#xff0c;三个为host 2.安装 在主控机上安装ansible 2.1 设置EPEL仓库 Ansible仓库默认不在yum仓库中&#xff0c;因此我们需要使用下面的命令启用epel仓库。 yum install epel-release -y2.2 执行安装命令 yum i…...

[个人笔记] Apache2.4配置TLS1.3安装openssl1.1.1

Linux - 运维篇 第二章 Apache2.4配置TLS1.3&安装openssl1.1.1 Linux - 运维篇系列文章回顾Apache2.4配置TLS1.3&安装openssl1.1.1参考来源 系列文章回顾 第一章 php-fpm编译和使用openssl扩展 Apache2.4配置TLS1.3&安装openssl1.1.1 [rootlocalhost ~]# yum ins…...

解密Kafka主题的分区策略:提升实时数据处理的关键

目录 一、Kafka主题的分区策略概述1.1 什么是Kafka主题的分区策略&#xff1f;1.2 为什么分区策略重要&#xff1f; 二、Kafka默认分区策略2.1 Round-Robin分区策略 三、自定义分区策略3.1 编写自定义分区器3.2 最佳实践&#xff1a;如何选择分区策略 四、分区策略的性能考量4.…...

GPT5大剧第二季开启,Sam Altman 重掌 OpenAI CEO 大权

OpenAl 最新公告: Sam Altman 重掌 OpenAI CEO 大权&#xff0c;公司迎来新的初始董事会 Mira Murati 出任 CTO,Greg Brockman 再次成为总裁。来看看CEO Sam Altman和董事会主席 Bret Taylor的最新发言。 2023年11月29日 以下是 CEO Sam Altman和董事会主席 Bret Taylor 今天下…...

Selenium 连接到现有的 Google Chrome 示例

python 3.7 selenium 3.14.1 urllib3 1.26.8 Google Chrome 119.0.6045.160 (64位) chromedriver.exe 119.0.6045.105(win32) 1 Google Chrome 添加参数 "--remote-debugging-port9222" 2 测试效果(chromedriver.exe 要和 Google Chrome 版本…...

EI级 | Matlab实现TCN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测

EI级 | Matlab实现TCN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测 目录 EI级 | Matlab实现TCN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.【EI级】Matlab实现TCN-BiLSTM-Multihead-…...

基于安卓的2048益智游戏的设计与实现

基于安卓的2048益智类游戏的设计与实现 摘要&#xff1a;现如今随着社会日新月异&#xff0c;人们越来越离不开智能手机所提供的灵活性与便携性。安卓系统是在这股手机发展迅猛的潮流中其市场占有率过半的手机平台&#xff0c;基于安卓系统的游戏开发有着不可估量的前景。 本论…...

解决Linux Visual Studio Code显示字体有问题/Liunx下Visual Studio Code更换字体

01、具体问题 在Linux下VsCode控制台与代码区显示异常&#xff0c;如下图所示&#xff1a; 代码显示 终端显示 02、解决方案 下载字体 [rootlocalhost mhzzj]$ cd /usr/share/fonts # 进入目录 [rootlocalhost fonts]$ sudo yum install git # 下载字体 [rootlocalhost fo…...

CityEngine2023 根据shp数据构建三维模型并导入UE5

目录 0 引言1 基本操作2 实践2.1 导入数据&#xff08;.shp&#xff09;2.2 构建三维模型2.3 将模型导入UE5 &#x1f64b;‍♂️ 作者&#xff1a;海码007&#x1f4dc; 专栏&#xff1a;CityEngine专栏&#x1f4a5; 标题&#xff1a;CityEngine2023 根据shp数据构建三维模型…...

修复电脑中缺失的VCRUNTIME140.dll文件的5个有效方法

vcruntime140.dll丢失5个修复方法与vcruntime140.dll是什么以及丢失对电脑的影响 引言&#xff1a; 在日常使用电脑的过程中&#xff0c;我们可能会遇到一些错误提示&#xff0c;其中之一就是“vcruntime140.dll丢失”。那么&#xff0c;什么是vcruntime140.dll&#xff1f;它…...

什么是PDN的交流阻抗?

什么是PDN的交流阻抗&#xff1f; 在电力电子领域&#xff0c;PDN&#xff08;Power Distribution Network&#xff09;的交流阻抗是一个重要的概念&#xff0c;它反映了PDN在交流电源和负载之间传输电能的能力。了解PDN的交流阻抗对于优化电源设计、提高系统性能和可靠性具有重…...

FFmpeg之将视频转为16:9(横屏)或9:16(竖屏)(一)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…...

Web安全漏洞分析-XSS(上)

随着互联网的迅猛发展&#xff0c;Web应用的普及程度也愈发广泛。然而&#xff0c;随之而来的是各种安全威胁的不断涌现&#xff0c;其中最为常见而危险的之一就是跨站脚本攻击&#xff08;Cross-Site Scripting&#xff0c;简称XSS&#xff09;。XSS攻击一直以来都是Web安全领…...

MVCC多版本并发控制相关面试题整理

多版本并发控制是一种用于支持并发事务的数据库管理系统技术&#xff0c;它允许多个事务同时访问数据库&#xff0c;而不会相互干扰或导致数据不一致。MVCC通过在数据库中维护不同版本的数据来实现这一目标&#xff0c;从而允许每个事务看到一致的数据库快照。 并发导致的问题…...

02-鸿蒙学习之4.0todoList练习

02-鸿蒙学习之4.0todoList练习 代码 /*** 1:组件必须使用Component装饰* 2.Entry 装饰哪个组件&#xff0c;哪个组件就呈现在页面上* 3.被Entry 装饰的入口组件。build&#xff08;&#xff09;必须有且仅有一个根 ** 容器 ** 组件* 其他的自定义组件&#xff0c;build() 中…...

springsecurity5.7.x和springsecurity6.x配置文件对比

springsecurity5和springsecurity6如何要实现多种登录方式,自定义登录方式都是一样的操作步骤,主要有四个步骤。 一、自定义登录用户实体实现springsecurity中的UserDetails接口 二、自定义登录用户实现类实现springsecurity中的UserDetailsService接口 三、自定义登录用户au…...

brat文本标注工具——安装

目录 一、Linux系统安装 1. centOS系统 2. Ubuntu系统 3. macOS系统 4.说明 二、Google Chrome安装 1. 打开命令行&#xff0c;切换到管理者权限 2. 安装依赖 3. 下载Google浏览器的安装包 4. 安装Google Chrome 三、yum更新 四、Apache安装 安装Apache 启动Apac…...

麒麟操作系统网桥配置

网桥概念&#xff1a; Bridge 是 Linux 上用来做 TCP/IP 二层协议交换的设备&#xff0c;其功能可 以简单的理解为是一个二层交换机或者 Hub&#xff1b;多个网络设备可以连接 到同一个 Bridge&#xff0c;当某个设备收到数据包时&#xff0c;Bridge 会将数据转发 给其他设备。…...

禁奥义·SQL秘籍

sql secret scripts sql 语法顺序、执行顺序、执行过程、要点解析、优化技巧。 1、语法顺序 如上图所示&#xff0c;为 sql 语法顺序与执行顺序对照图。其具体含义如下&#xff1a; 0、select&#xff1a; 用于从数据库中选取数据&#xff0c;即表示从数据库中查询到的数据的…...

浅谈用户体验测试的主要功能

用户体验(User Experience&#xff0c;简称UX)在现代软件和产品开发中变得愈发重要。为了确保产品能够满足用户期望&#xff0c;提高用户满意度&#xff0c;用户体验测试成为不可或缺的环节。本文将详细探讨用户体验测试的主要功能&#xff0c;以及它在产品开发过程中的重要性。…...