利用MCMC 获得泊松分布
- 写出概率流方程如下
if state == 0: if np.random.random() <= min([Lambda/2, 1]):state = 1else:passelif state == 1:if choose_prob_state[i] <= 0.5:#选择 1 -> 0,此时的接受概率为min[2/Lambda, 1]if np.random.random() <= min([2/Lambda, 1]):state = 0else:passelse:#选择 1 -> 2,此时接受概率为 min[Lambda/(n+1), 1]if np.random.random() <= min([Lambda/(state+1), 1]):state = 2else:passelif state >= 2:if choose_prob_state[i] <= 0.5:#选择 n -> n+1,此时接受概率为 min[Lambda/(n+1), 1]if np.random.random() <= min([Lambda/(state+1), 1]):state = state + 1else:passelse:#选择 n+1 > n,此时接受概率为 min[(n+1)/Lambda, 1]if np.random.random() <= min([(state)/Lambda, 1]):state = state - 1else:pass
- blocking 方法
def block_averages(data, block_size):num_blocks = len(data) // block_sizeblocks = data[:num_blocks*block_size].reshape(num_blocks, block_size)block_avgs = blocks.mean(axis=1)return block_avgsblock_mean = []
block_std = []for i in range(1, 201):block_size = 5 * iblock_avgs = block_averages(results, block_size)mean_estimate = np.mean(block_avgs)standard_error = np.std(block_avgs, ddof=1) / np.sqrt(len(block_avgs))block_mean.append(mean_estimate)block_std.append(standard_error)
- Lambda = 1 生成效果

average time: 1.072e-06
ave: 0.9996688
std: 1.00027000870093
(array([3.681131e+06, 3.678446e+06, 1.837276e+06, 6.127200e+05,
1.533770e+05, 3.116400e+04, 5.095000e+03, 7.020000e+02,
8.300000e+01, 6.000000e+00]), array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]), <BarContainer object of 10 artists>)
- blocking method

- 随着block 增大 稳定效果显著
- Lambda = 7

average time: 1.153e-06
ave: 7.0095212
std: 2.6496322285839153
(array([9.062000e+03, 6.352700e+04, 2.216480e+05, 5.190980e+05,
9.097340e+05, 1.274978e+06, 1.487161e+06, 1.487430e+06,
1.304976e+06, 1.016897e+06, 7.126600e+05, 4.541560e+05,
2.646540e+05, 1.432550e+05, 7.228000e+04, 3.374700e+04,
1.474600e+04, 6.073000e+03, 2.455000e+03, 9.640000e+02,
3.790000e+02, 9.900000e+01, 1.700000e+01, 4.000000e+00]), array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,
13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24.]), <BarContainer object of 24 artists>)

- 完整代码
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(20)
import copy
import time##pn = \lambda^n * exp(-\lambda)/n!def poidis(Lambda, num, init=0):random_list = np.zeros(num)state = initmax_state = initrandom_list[0] = statechoose_prob_state = np.random.random(num)for i in range(1, num):if state == 0: if np.random.random() <= min([Lambda/2, 1]):state = 1else:passelif state == 1:if choose_prob_state[i] <= 0.5:#选择 1 -> 0,此时的接受概率为min[2/Lambda, 1]if np.random.random() <= min([2/Lambda, 1]):state = 0else:passelse:#选择 1 -> 2,此时接受概率为 min[Lambda/(n+1), 1]if np.random.random() <= min([Lambda/(state+1), 1]):state = 2else:passelif state >= 2:if choose_prob_state[i] <= 0.5:#选择 n -> n+1,此时接受概率为 min[Lambda/(n+1), 1]if np.random.random() <= min([Lambda/(state+1), 1]):state = state + 1else:passelse:#选择 n+1 > n,此时接受概率为 min[(n+1)/Lambda, 1]if np.random.random() <= min([(state)/Lambda, 1]):state = state - 1else:passelse:print("undefined state!")breakrandom_list[i] = copy.deepcopy(state)if max_state < state:max_state = copy.deepcopy(state)return random_list, max_statenum = int(1e7)
start = time.time()
results, max_state = poidis(7, num)
end = time.time()
print("average time:", round((end-start)/num, 9))hist_doc = plt.hist(results, bins=[i for i in range(max_state+2)])
print("ave:", np.average(results))
print("std:", np.std(results))
print(hist_doc)plt.show()def block_averages(data, block_size):num_blocks = len(data) // block_sizeblocks = data[:num_blocks*block_size].reshape(num_blocks, block_size)block_avgs = blocks.mean(axis=1)return block_avgsblock_mean = []
block_std = []for i in range(1, 201):block_size = 5 * iblock_avgs = block_averages(results, block_size)mean_estimate = np.mean(block_avgs)standard_error = np.std(block_avgs, ddof=1) / np.sqrt(len(block_avgs))block_mean.append(mean_estimate)block_std.append(standard_error)plt.scatter(range(1, 201), block_std, s=2)
plt.show()
相关文章:
利用MCMC 获得泊松分布
写出概率流方程如下 if state 0: if np.random.random() < min([Lambda/2, 1]):state 1else:passelif state 1:if choose_prob_state[i] < 0.5:#选择 1 -> 0,此时的接受概率为min[2/Lambda, 1]if np.random.random() < min([2/Lambda, 1]…...
docker-compose脚本编写及常用命令
安装 linux DOCKER_CONFIG/usr/local/lib/docker/cli-plugins sudo mkdir -p $DOCKER_CONFIG/cli-plugins sudo curl -SL https://521github.com/docker/compose/releases/download/v2.6.1/docker-compose-linux-x86_64 -o $DOCKER_CONFIG/cli-plugins/docker-compose sudo c…...
编译企业微信会话内容存档PHP版SDK扩展
1.下载SDK 如果克隆不了,就页面下载 git clone https://github.com/pangdahua/php7-wxwork-finance-sdk2.下载企微官网C版本的最新sdk文件 下载地址:https://wwcdn.weixin.qq.com/node/wework/images/sdk_20201116.rar 下载以后将解压之后的文件夹里l…...
传统算法:使用 Pygame 实现K-Means 聚类算法
使用 Pygame 模块演示了 K-Means 聚类算法的基本原理。让我逐步解释它的实现: 初始化和基本设置 Pygame 初始化: 通过 pygame.init() 初始化 Pygame。 定义颜色和屏幕大小: 定义了一些颜色常量(WHITE, BLACK, RED, GREEN, BLUE)和屏幕的宽度和高度。 创建 Pygame 窗口:…...
WebUI工作流插件超越ComfyUI
在AI绘画领域,Stable Diffsion是最受欢迎的,因为它是开源软件。 开源有两大优势,一是免费,二是适合折腾。 大量的开发者、爱好者投入无尽的热情,来推动Stable Diffsion的快速发展。 在图形界面方面,WebU…...
Docker容器化平台及其优势和应用场景介绍
Docker是一种开源的容器化平台,它基于操作系统级别虚拟化技术,可以将应用程序及其依赖项打包成一个独立的容器,提供轻量级、一致性、可移植性的应用环境。Docker的基本概念和优势如下: 镜像(Image):Docker容器的基础&…...
Hive:从HDFS回收站恢复被删的表
场景 一张手工维护的内部表,本来排查没有使用,然后删掉了,发现又需要使用,只能恢复这张表了。 1.确认HDFS是否开启回收站功能 2.查看回收站中的数据 被删除的数据会放在删除数据时使用的用户目录下,如:使…...
TZOJ 1387 人见人爱A+B
答案: #include <stdio.h> void time(int ah, int am, int as, int bh, int bm, int bs, int* sum_h, int* sum_m, int* sum_s) //不需要返回值所以定义void函数,前面6个为输入,然后用指针存给后面三个 {*sum_s (as bs) % 60; …...
校园圈子系统丨交友丨地图找伴丨二手市场等功能丨源码交付支持二开丨APP小程序H5三端交付!
校园圈子系统是一款专为校园生活设计的智能应用,拥有丰富多样的功能模块,提供全方位的服务。无论您是师生还是校友,我们都为您打造了一个与校园紧密相连的交流平台。 通过校园圈子系统,您可以方便地浏览校内最新动态,包…...
java操作windows系统功能案例(一)
下面是一个Java操作Windows系统功能的简单案例: 获取系统信息: import java.util.Properties;public class SystemInfo {public static void main(String[] args) {Properties properties System.getProperties();properties.list(System.out);} }该程…...
【双向链表的实现】
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 1. 双向链表的结构 2. 双向链表的实现 2.1 头文件 ——双向链表的创建及功能函数的定义 2.2 源文件 ——双向链表的功能函数的实现 2.3 源文件 ——双向链表功能的…...
中台战略思想与架构总结
中台战略思想与架构总结 在2015年年中,马云带领阿里高管,拜访了游戏公司Supercell,以《部落战争》《海岛奇兵》《卡通农场》等游戏知名。 Supercell是一家典型的以小团队模式进行游戏开发的公司,一般来说两个员工,或…...
VUE2+THREE.JS点击事件
THREE.JS点击事件 1.增加监听点击事件2.点击事件实现3.记得关闭页面时 销毁此监听事件 1.增加监听点击事件 renderer.domElement.addEventListener("click", this.onClick, false); 注:初始化render时监听 2.点击事件实现 onClick(event) {const raycaster new …...
基于SSM+SpringBoot+Vue小区车位租赁系统
[技术实现] 小区车位租赁系统是使用SSMSpringBootVue前后端分离的管理系统。使用Spring框架可以在自动注入项目层级之间的调用对象,方便解耦,SpringMVC是体现了MVC设计思想的轻量级web框架,对web层进行解耦,使开发更简洁,MyBatis…...
Oracle(2-8)Configuring the Database Archiving Mode
文章目录 一、基础知识1、Redo Log History2、NOARCHIVELOG Mode 非归档模式3、ARCHIVELOG Mode 归档模式4、Changing the Archiving Mode 更改归档模式5、Auto and Manual Ar…...
制造企业建设数字工厂管理系统的难点主要有哪些
随着科技的飞速发展,制造企业正面临着从传统生产模式向数字化、智能化转型的挑战。其中,建设数字工厂管理系统是实现这一目标的重要途径。然而,在实际操作过程中,制造企业往往会遇到一系列难点。本文将对这些难点进行详细的分析。…...
基于UDP网络聊天室OICQ
Linux系统 Gcc Gdb makefile 实现局域网OICQ程序设计,包括客户端和服务端。 客户端描述:客户端运行开始出现登陆界面。与服务端进行连接,连接后把账号信息发送给服务端,服务端验证后,把确认结果通知客户端。如果通…...
基于STC12C5A60S2系列1T 8051单片机的液晶显示器LCD1602显示整数、小数应用
基于STC12C5A60S2系列1T 8051单片机的液晶显示器LCD1602显示整数、小数应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍液晶显示器LCD1602简单介绍IIC通信简单介绍…...
【微信小程序】保存多张图片到本地相册 wx.saveImageToPhotosAlbum
这里写目录标题 微信小程序检测是否有存储权限wx.getSetting 图片上传从HTML中提取img标签的src属性多图片下载 微信小程序检测是否有存储权限 wx.getSetting 上传前判断是否开启存储权限,如果不检测直接上传会出现fail的情况 var _this this wx.getSetting({su…...
【Android】使用intent.putExtra()方法在启动Activity时传递数据
食用方法 在Android中,你可以使用Intent对象来在启动Activity时传递数据。以下是一个示例,展示了如何在startActivity时传递数据到被启动的Activity: 在启动Activity的地方,创建一个Intent对象,并使用putExtra()方法…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
