洛谷 P2984 [USACO10FEB] Chocolate Giving S
文章目录
- [USACO10FEB] Chocolate Giving S
- 题面翻译
- 题目描述
- 输入格式
- 输出格式
- 题目描述
- 输入格式
- 输出格式
- 样例 #1
- 样例输入 #1
- 样例输出 #1
- 题意解析
- CODE
- 给点思考
[USACO10FEB] Chocolate Giving S
题面翻译
题目链接:https://www.luogu.com.cn/problem/P2984
题目描述
FJ 有 B B B 头奶牛 ( 1 ≤ B ≤ 25000 ) (1\le B\le 25000) (1≤B≤25000),有 N ( 2 × B ≤ N ≤ 50000 ) N(2\times B\le N\le 50000) N(2×B≤N≤50000) 个农场,编号 1 1 1 到 N N N,有 M ( N − 1 ≤ M ≤ 100000 ) M(N-1\le M\le 100000) M(N−1≤M≤100000) 条双向边,第 i i i 条边连接农场 R i R_i Ri 和 S i ( 1 ≤ R i ≤ N , 1 ≤ S i ≤ N ) S_i(1\le R_i\le N, 1\le S_i\le N) Si(1≤Ri≤N,1≤Si≤N),该边的长度是 L i ( 1 ≤ L i ≤ 2000 ) L_i(1\le L_i\le 2000) Li(1≤Li≤2000)。居住在农场 P i P_i Pi 的奶牛 A ( 1 ≤ P i ≤ N ) (1\le P_i\le N) (1≤Pi≤N),想送一份新年礼物给居住在农场 Q i ( 1 ≤ Q i ≤ N ) Q_i(1\le Q_i\le N) Qi(1≤Qi≤N) 的奶牛 B,但是奶牛 A 必须先到 FJ(居住在编号 1 1 1 的农场)那里取礼物,然后再送给奶牛 B。你的任务是:奶牛 A 至少需要走多远的路程?
输入格式
-
第一行三个整数 N , M , B N,M,B N,M,B。
-
第 2 2 2 至 M + 1 M+1 M+1 行,每行 3 3 3 个整数 R i , S i , L i R_i,S_i,L_i Ri,Si,Li。
-
第 M + 2 M+2 M+2 至 M + B + 1 M+B+1 M+B+1 行,进行 B B B 次询问,每行 2 2 2 个整数 P i , Q i P_i ,Q_i Pi,Qi。
输出格式
每次询问输出一个整数,即答案。
题目描述
Farmer John is distributing chocolates at the barn for Valentine’s day, and B (1 <= B <= 25,000) of his bulls have a special cow in mind to receive a chocolate gift.
Each of the bulls and cows is grazing alone in one of the farm’s N (2*B <= N <= 50,000) pastures conveniently numbered 1…N and connected by M (N-1 <= M <= 100,000) bidirectional cowpaths of various lengths. Some pastures might be directly connected by more than one cowpath. Cowpath i connects pastures R_i and S_i (1 <= R_i <= N; 1 <= S_i <= N) and has length L_i (1 <= L_i <= 2,000).
Bull i resides in pasture P_i (1 <= P_i <= N) and wishes to give a chocolate to the cow in pasture Q_i (1 <= Q_i <= N).
Help the bulls find the shortest path from their current pasture to the barn (which is located at pasture 1) and then onward to the pasture where their special cow is grazing. The barn connects, one way or another (potentially via other cowpaths and pastures) to every pasture.
As an example, consider a farm with 6 pastures, 6 paths, and 3 bulls (in pastures 2, 3, and 5) who wish to bestow chocolates on their love-objects:
*1 <-- Bull wants chocolates for pasture 1 cow[4]--3--[5] <-- [5] is the pasture ID/ |/ |4 2 <-- 2 is the cowpath length/ | between [3] and [4][1]--1--[3]*6/ \ /9 3 2/ \/[6] [2]*4
* The Bull in pasture 2 can travel distance 3 (two different ways) to get to the barn then travel distance 2+1 to pastures [3] and [4] to gift his chocolate. That’s 6 altogether.
* The Bull in pasture 5 can travel to pasture 4 (distance 3), then pastures 3 and 1 (total: 3 + 2 + 1 = 6) to bestow his chocolate offer.
* The Bull in pasture 3 can travel distance 1 to pasture 1 and then take his chocolate 9 more to pasture 6, a total distance of 10.
输入格式
* Line 1: Three space separated integers: N, M, and B
* Lines 2…M+1: Line i+1 describes cowpath i with three
space-separated integers: R_i, S_i, and L_i
* Lines M+2…M+B+1: Line M+i+1 contains two space separated integers: P_i and Q_i
输出格式
* Lines 1…B: Line i should contain a single integer, the smallest distance that the bull in pasture P_i must travel to get chocolates from the barn and then award them to the cow of his dreams in pasture Q_i
样例 #1
样例输入 #1
6 7 3
1 2 3
5 4 3
3 1 1
6 1 9
3 4 2
1 4 4
3 2 2
2 4
5 1
3 6
样例输出 #1
6
6
10
题意解析
- 找一个点先到 1 1 1 号点的最短距离,再找 1 1 1 号点到另一点的最短距离,求两者之和。
- 乍一看以为是 F l o y d Floyd Floyd 算法,但是一看数据范围很大,那就并不是了,那还有什么算法能解决这种最短路问题呢?
- 其实这并不是多源最短路问题,因为是双向图,所以你到我的最短路其实也是我到你的最短路,所以这题就变成了 1 1 1 号点到另外两个点的最短路之和的问题了,其实是单源最短路问题。
- 考虑到 D i j k s t r a Dijkstra Dijkstra 可能超时,所以用 S P F A SPFA SPFA
CODE
#include <iostream>
#include <vector>
#include <cstring>
#include <algorithm>
#include <queue>
#define ll long long
#define INF 0x3f3f3f3f using namespace std;typedef pair<int, int> pii;const int N = 50050, M = 2e5 + 10;
int h[N], e[M], ne[M], w[M], idx; // 定义图的存储结构
int dist[N]; // 存储每个节点到源点的最短距离
bool st[N]; // 存储每个节点是否在队列中
int n, m, b; // n是节点数,m是边的数目,b是查询的数目// 添加一条边
void add(int a, int b, int c){e[idx] = b; // 边的终点ne[idx] = h[a]; // 下一条相同起点的边w[idx] = c; // 边的权重h[a] = idx++; // 更新起点a的最后一条边
}// SPFA算法,用于求解单源最短路径
void spfa(){memset(dist, INF, sizeof dist); // 初始化所有节点到源点的距离为无穷大dist[1] = 0; // 源点到自己的距离为0queue<int> q;q.push(1); // 将源点加入队列st[1] = true; // 标记源点已经在队列中while(q.size()){auto t = q.front(); // 取出队首元素q.pop();st[t] = false; // 标记t已经不在队列中for(int i = h[t]; i != -1; i = ne[i]){ // 遍历所有从t出发的边int j = e[i];if(dist[j] > dist[t] + w[i]){ // 如果可以通过t到j的距离小于当前的最短距离dist[j] = dist[t] + w[i]; // 更新最短距离if(!st[j]){ // 如果j不在队列中q.push(j); // 将j加入队列st[j] = true; // 标记j已经在队列中}}}}
}int main()
{memset(h, -1, sizeof h); // 初始化邻接表cin >> n >> m >> b; // 输入节点数,边的数目,查询的数目while(m--){int a, b, c;scanf("%d%d%d", &a, &b, &c); // 输入边的信息add(a, b, c), add(b, a, c); // 将边添加到图中}spfa(); // 执行SPFA算法,求解最短路径while(b--){int p, q;scanf("%d%d", &p, &q); // 输入查询cout << dist[p] + dist[q] << endl; // 输出结果}
}
给点思考
- 为什么边权数组不用初始化为 I N F INF INF:
- 因为只有在遍历队列首元素
t
的所有出边时才会用到w[i]
,所以能用到肯定存在,所以不需要初始化。
- 因为只有在遍历队列首元素
- 无向图该注意的问题:
- 边数应该开两倍,因为无向,开少了就
RE
。
- 边数应该开两倍,因为无向,开少了就
相关文章:
洛谷 P2984 [USACO10FEB] Chocolate Giving S
文章目录 [USACO10FEB] Chocolate Giving S题面翻译题目描述输入格式输出格式 题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 题意解析CODE给点思考 [USACO10FEB] Chocolate Giving S 题面翻译 题目链接:https://www.luogu.com.cn/problem/P2984 题目描…...

【专题】【数列极限】
【整体思路】 【常用不等式】...
oracle基础系统学习文章目录
oracle基础系统学习——点击标题可跳转对应文章 01.CentOS7静默安装oracle11g 02.Oracle的启动过程 03.从简单的sql开始 04.Oracle的体系架构 05.Oracle数据库对象 06.Oracle数据备份与恢复 07.用户和权限管理 08.Oracle的表 09.Oracle表的分区 10.Oracle的同义词与序列 11.Or…...

长度最小的子数组(Java详解)
目录 题目描述 题解 思路分析 暴力枚举代码 滑动窗口代码 题目描述 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条…...

计算机组成学习-数据的表示和运算总结
复习本章时,思考以下问题: 1)在计算机中,为什么要采用二进制来表示数据?2)计算机在字长足够的情况下能够精确地表示每个数吗?若不能,请举例说明。3)字长相同的情况下,浮点数和定点数的表示范围…...
目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】机器视觉(基础篇)(八)
目录 前言 知识储备 机器视觉学习路线 视觉算法流程...
【4】基于多设计模式下的同步异步日志系统-框架设计
7. 日志系统框架设计 本项⽬实现的是⼀个多日志器日志系统,主要实现的功能是让程序员能够轻松的将程序运行日志信息落地到指定的位置,且⽀持同步与异步两种方式的日志落地方式。 项目的框架设计将项目分为以下几个模块来实现。 日志等级模块 日志等级模…...

Jupyter Markdown 插入图片
首先截图 注意 这一步是关键的!! 它需要使用电脑自带的截图,用qq啊vx啊美图秀秀那些都不行哦。 截图之后复制: 然后快捷键粘贴到jupyter里面,它会生成一段代码(没有代码就是说截图形式不对)&a…...

web自动化 -- pyppeteer
由于Selenium流行已久,现在稍微有点反爬的网站都会对selenium和webdriver进行识别,网站只需要在前端js添加一下判断脚本,很容易就可以判断出是真人访问还是webdriver。虽然也可以通过中间代理的方式进行js注入屏蔽webdriver检测,但…...

Java 数组另类用法(字符来当数组下标使用)
一、原因 看力扣的时候发现有位大佬使用字符来当数组下标使用。 class Solution {public int lengthOfLongestSubstring(String s) {int result 0;int[] hash new int[130];int i 0;for(int j 0; j < s.length(); j) {while(hash[s.charAt(j)] > 0) {hash[s.charAt…...
error转string
1 概述 在golang中,error类型是非常常见的一种数据类型。在开发过程中,经常会遇到需要将error类型转换成string类型的情况。本文主要介绍几种常见的golang error转string的方法。 2 使用Error()函数 在golang中,Error()函数是error类型的一…...
Android监听用户的截屏、投屏、录屏行为
Android监听用户的截屏、投屏、录屏行为 一.截屏 方案一:使用系统广播监听截屏操作 从Android Q(10.0)开始,Intent.ACTION_SCREEN_CAPTURED_CHANGED字段不再被支持。这是因为Google在安卓10 中引入了一个新的隐私限制&#…...
MATLAB算法实战应用案例精讲-【路径规划】 图搜索算法
目录 前言 几个高频面试题目 运动规划、路径规划、轨迹规划对比 1. 运动规划 2. 路径规划VS轨迹规划...
Elasticsearch-Kibana使用教程
1.索引操作 1.1创建索引 PUT /employee {"settings": {"index": {"refresh_interval": "1s","number_of_shards": 1,"max_result_window": "10000","number_of_replicas": 0}},"mappi…...

mysql(八)docker版Mysql8.x设置大小写忽略
Mysql 5.7设置大小写忽略可以登录到Docker内部,修改/etc/my.cnf添加lower_case_table_names1,并重启docker使之忽略大小写。但MySQL8.0后不允许这样,官方文档记录: lower_case_table_names can only be configured when initializ…...
KALI LINUX攻击与渗透测试
预计更新 第一章 入门 1.1 什么是Kali Linux? 1.2 安装Kali Linux 1.3 Kali Linux桌面环境介绍 1.4 基本命令和工具 第二章 信息收集 1.1 网络扫描 1.2 端口扫描 1.3 漏洞扫描 1.4 社交工程学 第三章 攻击和渗透测试 1.1 密码破解 1.2 暴力破解 1.3 漏洞利用 1.4 …...

vue之mixin混入
vue之mixin混入 mixin是什么? 官方的解释: 混入 (mixin) 提供了一种非常灵活的方式,来分发 Vue 组件中的可复用功能。一个混入对象可以包含任意组件选项。当组件使用混入对象时,所有混入对象的选项将被“混合”进入该组件本身的…...
[ffmpeg] find 编码器
背景 整理 ffmpeg 中,如何通过名字或者 id 找到对应编码器的。 具体流程 搜索函数 avcodec_find_encoder // 通过 ID 搜索编码器 avcodec_find_encoder_by_name // 通过名字搜索编码器源码分析 ffmpeg 中所有支持的编码器都会注册到 codec_list.c 文件中&…...

Android CardView基础使用
目录 一、CardView 1.1 导入material库 1.2 属性 二、使用(效果) 2.1 圆角卡片效果 2.2 阴影卡片效果 2.3 背景 2.3.1 设置卡片背景(app:cardBackgroundColor) 2.3.2 内嵌布局,给布局设置背景色 2.4 进阶版 2.4.1 带透明度 2.4.2 无透明度 一、CardView 顾名…...
云原生Kubernetes系列 | init container初始化容器的作用
云原生Kubernetes系列 | init container初始化容器的作用 kubernetes 1.3版本引入了init container初始化容器特性。主要用于在启动应用容器(app container)前来启动一个或多个初始化容器,作为应用容器的一个基础。只有init container运行正常后,app container才会正常运行…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...