当前位置: 首页 > news >正文

不同数据库进行同步和增量数据(SQL server 与MySQL数据库为例)

场景

最近在做的一个项目需要将远程服务器的SQL server数据库中表的数据传输到本机的MySQL数据库中,并且远程的SQL server数据库表的数据会实时进行更新,并且差不多是一分钟内传输18条数据,例如现在是2023-12-4 15:09,在15:08这个时间内有18条数据需要首先进SQL server数据库,再更新到MySQL数据库中,这种场景如果每分钟都能将18条数据放入SQL server数据库的话就非常简单了,但是在15:08的时候,这18条数据可能只来11条,剩下的7条可能在15:09或后面的时间陆续过来。我开始的想法是通过最后更新的时间的时间戳来查询新来的数据然后更新到MySQL中,但是由于在最终的时间内还会来前面时间的数据,这样会导致前面时间的数据丢失,所以我想了另外一方法。

  1. 首先使用python写一个程序来同步SQL sever的历史数据到MySQL数据库中
  2. 在SQL server中创建一个中间表。
  3. 在SQL server中要传输的表中创建一个触发器,当这个表更新数据则触发将更新的数据放入到中间表中
  4. 在python脚本中写一个循环来定期检查中间表,我的SQL server表中由两个主键定义一条数据,所以中间表也是由两个字段定义一条数据,由于入库历史数据的数据量非常大,有几十万条,在这个入库历史数据的时间段内更新了很多条数据,所以可能中间表的数据与入库到MySQL中的字段有重复,所以我需要先验证中间表中的数据MySQL是否存在。
    1. 存在则删除中间表中这条数据
    2. 不存在则插入MySQL后删除这条数据
  5. 最后完成了入库程序,经过验证没有数据丢失

1.历史数据入库

历史数据入库我使用的python写的,首先定义两个数据库的信息

# 使用示例
sql_server_conn_params = {'driver': '{SQL Server}','server': 'ip','database': '数据库名','uid': 'jzyg','pwd': ''
}mysql_conn_params = {'host': 'localhost','user': 'root','password': '123456','database': '数据库名','charset': 'utf8mb4'
}

定义查询语句

querySolar = 'SELECT dtime,stationID,staionName,electric,tiltSolar,levelSolar,scatterSolar,directSolar,tiltSolar_day,levelSolar_day,scatterSolar_day,directSolar_day,sunShine_day FROM realData_Solar'

定义入库历史数据函数

    def transfer_wind_data(self):# 连接到 SQL Serverwith pyodbc.connect(**self.sql_server_conn_params) as sql_server_conn:with sql_server_conn.cursor() as sql_server_cursor:# 修改查询,仅选择上次同步后的数据modified_query = self.queryWind + " WHERE dtime >= ? ORDER BY dtime"sql_server_cursor.execute(modified_query, (self.wind_last_dtime,))rows = sql_server_cursor.fetchall()if not rows:return  # 没有新数据# 连接到 MySQLwith pymysql.connect(**self.mysql_conn_params) as mysql_conn:with mysql_conn.cursor() as mysql_cursor:data_list = []for row in rows:observe_time = row[0].strftime("%Y-%m-%d %H:%M:00")fsz_id = row[1].replace('"', "").strip()station_name = row[2]farmName = station_name.split("-")[0]# 根据电站名查询电站号sql = "SELECT FARMID FROM com_farm WHERE FARMNAME LIKE %s"mysql_cursor.execute(sql, ('%' + farmName + '%',))result = mysql_cursor.fetchone()farm_id = Noneif result is not None:farm_id = result# 处理查询结果为空的情况if farm_id is not None:farm_id = farm_id[0]staion_name =  row[2]wind_direction_instant = row[3]wind_speed_instant = row[4]wind_speed_two_min = row[5]wind_speed_ten_min = row[6]data = (observe_time,fsz_id,staion_name,farm_id,wind_direction_instant,wind_speed_instant,wind_speed_two_min,wind_speed_ten_min)data_list.append(data)self.wind_last_dtime = row[0].strftime("%Y-%m-%d %H:%M:%S")if data_list:result = mysql_cursor.executemany('INSERT INTO wind_monitor''(observe_time,fsz_id,station_name,farm_id,wind_direction_instant,wind_speed_instant,wind_speed_two_min,wind_speed_ten_min) ''VALUES (%s,%s,%s,%s,%s,%s,%s,%s)', data_list)  # 根据你的表结构修改mysql_conn.commit()print(f'wind_monitor表插入了{result}行数据.' if result else '没有新数据插入。')

2.创建中间表和触发器

创建中间表

CREATE TABLE intermediateData_Wind AS SELECT * FROM realData_Wind WHERE 1=0;

创建触发器

CREATE TRIGGER CopyToIntermediateTable
ON realData_Wind
AFTER INSERT
AS
BEGIN-- 插入操作INSERT INTO intermediateData_Wind (dtime, stationID, staionName, windDirectionInstant, windSpeedInstant, windSpeed2min, windSpeed10min)SELECT dtime, stationID, staionName, windDirectionInstant, windSpeedInstant, windSpeed2min, windSpeed10minFROM inserted;
END;

3.创建轮询中间表代码

def transfer_insert_intermediateData_Wind(self):# 连接到 SQL Serverwith pyodbc.connect(**self.sql_server_conn_params) as sql_server_conn:with sql_server_conn.cursor() as sql_server_cursor:# 查询中间表中所有数据sql_server_cursor.execute(self.queryIntermediateData)intermediate_rows = sql_server_cursor.fetchall()# 用于跟踪删除和插入的数量deleted_count = 0inserted_count = 0# 连接到 MySQLwith pymysql.connect(**self.mysql_conn_params) as mysql_conn:with mysql_conn.cursor() as mysql_cursor:for row in intermediate_rows:observe_time = row[0].strftime("%Y-%m-%d %H:%M:00")fsz_id = row[1].replace('"', "").strip()# 检查wind_monitor表中是否存在相同数据check_query = "SELECT COUNT(*) FROM wind_monitor WHERE observe_time = %s AND fsz_id = %s"mysql_cursor.execute(check_query, (observe_time, fsz_id))count = mysql_cursor.fetchone()[0]dtime = row[0].strftime("%Y-%m-%d %H:%M:00.000")if count > 0:# 数据存在,从中间表删除delete_query = "DELETE FROM intermediateData_Wind WHERE dtime = ? AND stationID = ?"sql_server_cursor.execute(delete_query, (dtime, row[1]))sql_server_conn.commit()deleted_count += 1else:# 数据不存在,插入到wind_monitor并从中间表删除station_name = row[2]farmName = station_name.split("-")[0]# 根据电站名查询电站号farm_query = "SELECT FARMID FROM com_farm WHERE FARMNAME LIKE %s"mysql_cursor.execute(farm_query, ('%' + farmName + '%',))farm_result = mysql_cursor.fetchone()farm_id = farm_result[0] if farm_result else Nonewind_direction_instant = row[3]wind_speed_instant = row[4]wind_speed_two_min = row[5]wind_speed_ten_min = row[6]insert_data = (observe_time, fsz_id, station_name, farm_id, wind_direction_instant,wind_speed_instant, wind_speed_two_min, wind_speed_ten_min)insert_query = 'INSERT INTO wind_monitor (observe_time, fsz_id, station_name, farm_id, wind_direction_instant, wind_speed_instant, wind_speed_two_min, wind_speed_ten_min) VALUES (%s, %s, %s, %s, %s, %s, %s, %s)'mysql_cursor.execute(insert_query, insert_data)mysql_conn.commit()inserted_count += 1delete_query = "DELETE FROM intermediateData_Wind WHERE dtime = ? AND stationID = ?"sql_server_cursor.execute(delete_query, (dtime, row[1]))sql_server_conn.commit()# 打印删除和插入的数据统计print(f"从intermediateData_Wind表中删除了{deleted_count}条数据.")print(f"向wind_monitor表中插入了{inserted_count}条数据.")

4.总体代码

import threading
import time
import pyodbc
import pymysql
class DataTransfer:def __init__(self, sql_server_conn_params, mysql_conn_params, queryWind,queryIntermediateData, interval=1):self.sql_server_conn_params = sql_server_conn_paramsself.mysql_conn_params = mysql_conn_paramsself.queryWind = queryWindself.queryIntermediateData = queryIntermediateDataself.interval = intervalself.wind_last_dtime = '1970-01-01 00:00:00'  # 初始时间def clear_mysql_tables(self):"""清空 MySQL 中的指定表格数据"""try:with pymysql.connect(**self.mysql_conn_params) as mysql_conn:with mysql_conn.cursor() as cursor:# 清空 wind_monitor 表cursor.execute("TRUNCATE TABLE wind_monitor")mysql_conn.commit()print("已清空 wind_monitor 表的数据。")except Exception as e:print(f"清空表格时发生错误: {e}")def transfer_data(self):self.transfer_wind_data()while True:try:self.transfer_insert_intermediateData_Wind()except Exception as e:print(f"发生错误: {e}")# 等待一定时间再次传输数据time.sleep(self.interval)def transfer_insert_intermediateData_Wind(self):# 连接到 SQL Serverwith pyodbc.connect(**self.sql_server_conn_params) as sql_server_conn:with sql_server_conn.cursor() as sql_server_cursor:# 查询中间表中所有数据sql_server_cursor.execute(self.queryIntermediateData)intermediate_rows = sql_server_cursor.fetchall()# 用于跟踪删除和插入的数量deleted_count = 0inserted_count = 0# 连接到 MySQLwith pymysql.connect(**self.mysql_conn_params) as mysql_conn:with mysql_conn.cursor() as mysql_cursor:for row in intermediate_rows:observe_time = row[0].strftime("%Y-%m-%d %H:%M:00")fsz_id = row[1].replace('"', "").strip()# 检查wind_monitor表中是否存在相同数据check_query = "SELECT COUNT(*) FROM wind_monitor WHERE observe_time = %s AND fsz_id = %s"mysql_cursor.execute(check_query, (observe_time, fsz_id))count = mysql_cursor.fetchone()[0]dtime = row[0].strftime("%Y-%m-%d %H:%M:00.000")if count > 0:# 数据存在,从中间表删除delete_query = "DELETE FROM intermediateData_Wind WHERE dtime = ? AND stationID = ?"sql_server_cursor.execute(delete_query, (dtime, row[1]))sql_server_conn.commit()deleted_count += 1else:# 数据不存在,插入到wind_monitor并从中间表删除station_name = row[2]farmName = station_name.split("-")[0]# 根据电站名查询电站号farm_query = "SELECT FARMID FROM com_farm WHERE FARMNAME LIKE %s"mysql_cursor.execute(farm_query, ('%' + farmName + '%',))farm_result = mysql_cursor.fetchone()farm_id = farm_result[0] if farm_result else Nonewind_direction_instant = row[3]wind_speed_instant = row[4]wind_speed_two_min = row[5]wind_speed_ten_min = row[6]insert_data = (observe_time, fsz_id, station_name, farm_id, wind_direction_instant,wind_speed_instant, wind_speed_two_min, wind_speed_ten_min)insert_query = 'INSERT INTO wind_monitor (observe_time, fsz_id, station_name, farm_id, wind_direction_instant, wind_speed_instant, wind_speed_two_min, wind_speed_ten_min) VALUES (%s, %s, %s, %s, %s, %s, %s, %s)'mysql_cursor.execute(insert_query, insert_data)mysql_conn.commit()inserted_count += 1delete_query = "DELETE FROM intermediateData_Wind WHERE dtime = ? AND stationID = ?"sql_server_cursor.execute(delete_query, (dtime, row[1]))sql_server_conn.commit()# 打印删除和插入的数据统计print(f"从intermediateData_Wind表中删除了{deleted_count}条数据.")print(f"向wind_monitor表中插入了{inserted_count}条数据.")def transfer_wind_data(self):# 连接到 SQL Serverwith pyodbc.connect(**self.sql_server_conn_params) as sql_server_conn:with sql_server_conn.cursor() as sql_server_cursor:# 修改查询,仅选择上次同步后的数据modified_query = self.queryWind + " WHERE dtime >= ? ORDER BY dtime"sql_server_cursor.execute(modified_query, (self.wind_last_dtime,))rows = sql_server_cursor.fetchall()if not rows:return  # 没有新数据# 连接到 MySQLwith pymysql.connect(**self.mysql_conn_params) as mysql_conn:with mysql_conn.cursor() as mysql_cursor:data_list = []for row in rows:observe_time = row[0].strftime("%Y-%m-%d %H:%M:00")fsz_id = row[1].replace('"', "").strip()station_name = row[2]farmName = station_name.split("-")[0]# 根据电站名查询电站号sql = "SELECT FARMID FROM com_farm WHERE FARMNAME LIKE %s"mysql_cursor.execute(sql, ('%' + farmName + '%',))result = mysql_cursor.fetchone()farm_id = Noneif result is not None:farm_id = result# 处理查询结果为空的情况if farm_id is not None:farm_id = farm_id[0]staion_name =  row[2]wind_direction_instant = row[3]wind_speed_instant = row[4]wind_speed_two_min = row[5]wind_speed_ten_min = row[6]data = (observe_time,fsz_id,staion_name,farm_id,wind_direction_instant,wind_speed_instant,wind_speed_two_min,wind_speed_ten_min)data_list.append(data)self.wind_last_dtime = row[0].strftime("%Y-%m-%d %H:%M:%S")if data_list:result = mysql_cursor.executemany('INSERT INTO wind_monitor''(observe_time,fsz_id,station_name,farm_id,wind_direction_instant,wind_speed_instant,wind_speed_two_min,wind_speed_ten_min) ''VALUES (%s,%s,%s,%s,%s,%s,%s,%s)', data_list)  # 根据你的表结构修改mysql_conn.commit()print(f'wind_monitor表插入了{result}行数据.' if result else '没有新数据插入。')def start(self):# 在启动线程前先清空表格self.clear_mysql_tables()thread = threading.Thread(target=self.transfer_data)thread.start()sql_server_conn_params = {'driver': '{SQL Server}','server': '','database': '','uid': '','pwd': ''
}mysql_conn_params = {'host': 'localhost','user': 'root','password': '123456','database': '','charset': 'utf8mb4'
}
queryIntermediateData = "SELECT dtime,stationID,staionName,windDirectionInstant,windSpeedInstant,windSpeed2min,windSpeed10min FROM intermediateData_Wind"
queryWind = 'SELECT dtime,stationID,staionName,windDirectionInstant,windSpeedInstant,windSpeed2min,windSpeed10min FROM realData_Wind'
data_transfer = DataTransfer(sql_server_conn_params, mysql_conn_params, queryWind,queryIntermediateData)
data_transfer.start()

相关文章:

不同数据库进行同步和增量数据(SQL server 与MySQL数据库为例)

场景 最近在做的一个项目需要将远程服务器的SQL server数据库中表的数据传输到本机的MySQL数据库中,并且远程的SQL server数据库表的数据会实时进行更新,并且差不多是一分钟内传输18条数据,例如现在是2023-12-4 15:09,在15:08这个…...

国内的几款强大的AI智能—AI语言模型

R5Ai智能助手是一款由百度研发的文心一言,它支持gpt4 / gpt-3.5 / claude,也支持AI绘画,每天提供十次免费使用机会,无需魔法。该智能助手具有以下优点:会画画,没有使用次数限制,可以在界面上找到…...

linux下恶意软件的七种反分析技术

7 类主流的 Linux 恶意软件反分析/检测躲避技术 反调试(Anti-Debug): 软件调试是恶意软件分析的常⽤⼿段之⼀,但恶意软件可以通过识别调试器特征,实现⾃⾝恶意⾏为的隐藏,或导致调试失败,从⽽规避分析与检测…...

Spring Security OAuth2 认证服务器自定义异常处理

目录 前言WebResponseExceptionTranslator自定义异常处理1、自定义我们响应实体类2、定义响应结果枚举类3、自定义异常转换类4、配置自定义异常转换器5、测试 前言 Spring Security OAuth2 认证失败的格式如下 {"error": "unsupported_grant_type","…...

selenium环境安装

一、下载安装python 下载python安装python设置python环境变量安装selenium (1)下载python 您可以从Python官方网站(https://www.python.org/downloads/)下载Python。在页面上,您将看到不同版本的Python供您选择。根…...

(C++)和为s的两个数字--双指针算法

个人主页:Lei宝啊 愿所有美好如期而遇 和为S的两个数字_牛客题霸_牛客网输入一个升序数组 array 和一个数字S,在数组中查找两个数,使得他们的和正好是S,如果。题目来自【牛客题霸】https://www.nowcoder.com/practice/390da4f7a…...

鸿蒙(HarmonyOS)应用开发——构建页面(题目答案)

判断题 1.在Column容器中的子组件默认是按照从上到下的垂直方向布局的,其主轴的方向是垂直方向,在Row容器中的组件默认是按照从左到右的水平方向布局的,其主轴的方向是水平方向。 正确(True) 2.List容器可以沿水平方向排列,也可…...

Python基础快速过一遍

文章目录 一、变量及基本概念1、变量2、变量类型3、变量格式化输出4、type()函数5、input()函数6、类型转换函数7、注释 二、Python运算/字符1、算数运算2、比较运算3、逻辑运算4、赋值运算符5、转义字符6、成员运算符 三、判断/循环语句1、if判断语句2、while循环语句3、for循…...

等保测评报价相差很大,里面有什么门道

等保测评报价的差异主要源于以下几点: 服务质量评估标准不同:不同的测评机构在测评过程中所提供的服务范围、深度、细节等方面可能存在差异,因此导致报价有所不同。一些机构可能提供全面且细致的测评服务,致力于提供高质量的等保测…...

MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】

1、rvctools下载安装 rvctools下载地址:rvctools下载 截图如下,点击红色箭头指示的“Download Shared Folder” 即可下载 下载之后进行解压,解压到D:\MATLAB\toolbox这个工具箱目录,这个安装路径根据自己的情况来选择&#xff0c…...

如何精准操作无人机自动停机坪?

无人机自动停机坪通过自主导航和避障功能,实现了无人机的自主降落和起飞,在无人机技术领域起到了至关重要的作用。停机坪不仅仅是无人机的起降平台,还具备自动换电或充电等功能,为无人机的自动化提供了关键支持。为更有效地操作无…...

【蓝桥杯】带分数

带分数 题目要求用一个ab/c的形式得到一个值&#xff0c;而且只能在1~9里面不重复的组合。 可以对1~9进行全排列&#xff0c;然后不断划分区间。 #include<iostream> #include<vector> using namespace std; int st[15]; int num[15]; int res; int n;int calc(i…...

软件工程 课堂测验 选择填空

系统流程图用图形符号表示系统中各个元素&#xff0c;表达了系统中各个元素之间的 信息流动 喷泉模型是一种以用户需求为动力&#xff0c;以 对象 为驱动的模型。 软件生存周期中最长的是 维护 阶段。 变换流的DFD由三部分组成&#xff0c;不属于其中一部分的是 事务中心 软…...

计算机网络的分类

目录 一、按照传输介质进行分类 1、有线网络 2、无线网络 二、按照使用者进行分类 1、公用网 (public network) 2、专用网(private network) 三、按照网络规模和作用范围进行分类 1、PAN 个人局域网 2、LAN 局域网 3、MAN 城域网 4、 WAN 广域网 5、Internet 因特…...

百度收录批量查询工具,免费SEO优化排名工具

拥有一个在搜索引擎中得到良好收录的网站对于个人和企业都至关重要。而百度&#xff0c;作为中国最大的搜索引擎&#xff0c;其收录情况直接影响着网站的曝光度和流量。 百度搜索引擎是中文用户获取信息的重要途径之一。而在这个竞争激烈的网络环境中&#xff0c;了解自己网站…...

select选择框里填充图片,下拉选项带图片

遇到一个需求&#xff0c;选择下拉框选取图标&#xff0c;填充到框里 1、效果展示 2、代码 <el-form-item label"工种图标" class"Form_icon Form_label"><el-select ref"select" :value"formLabelAlign.icon" placeholder&…...

轨道交通数字孪生可视化平台,助力城市交通运营智慧化

随着经济和科技的快速发展&#xff0c;轨道交通运营管理在日常操作者面临各种挑战。数字孪生技术被认为是未来轨道交通运营管理的重要手段之一。它可以提高轨道交通的运营效率和安全性&#xff0c;助力城市交通运营智慧化。以城市轨道交通运维管理业务需求为导向,从数据感知、融…...

【每日OJ —— 101. 对称二叉树】

每日OJ —— 101. 对称二叉树 1.题目&#xff1a;101. 对称二叉树2.解法2.1.算法讲解2.2.代码实现2.3.提交通过展示 1.题目&#xff1a;101. 对称二叉树 2.解法 2.1.算法讲解 1.该题是判断二叉树是否对称&#xff0c;关键在于&#xff0c;左子树等于右子树&#xff0c;而所给的…...

善网商城上线洁柔产品 公益人专享爱心价官方正品

近日&#xff0c;中国善网慈善商城&#xff08;以下简称善网商城&#xff09;系统经升级后重新上线。目前善网商城线上销售的中顺洁柔旗下慈善产品已顺利获得中顺洁柔纸业股份有限公司授权&#xff0c;双方就合作事宜达成共识&#xff0c;并于近日签订线上经营授权书。 &#x…...

禁止谷歌浏览器自动更新

禁止谷歌浏览器自动更新 在使用Python包selenium的时候浏览器版版本发生变化后产生很多问题如&#xff1a; 1、直接版本不对应无法运行 2、版本不一致导致debug启动浏览器超级慢 这里是已谷歌浏览器为代表的。 禁止自动更新的方法如下&#xff1a; 1、WinR调出运行&#x…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...