业务场景中Hive解析Json常用案例
业务场景中Hive解析Json常用案例
json在线工具
- json格式转换在线工具
https://tool.lu/json/

- format格式互转:
// 格式化可以合并整行显示
{"name":"John Doe","age":35,"email":"john@example.com"}// 格式化可以展开显示,示例数据更清晰
{"name": "John Doe","age": 35,"email": "john@example.com"
}
- 转化常用yaml格式
工具提供了各种跨格式转化
age: 35
email: john@example.com
name: 'John Doe'
根据json串自动生成生成 Java 类等功能也非常实用
示例准备
需要Hive环境
- test测试表
-- 在Hive中建测试表
CREATE TABLE json_test_table (id INT,json_column STRING
) STORED AS TEXTFILE;
json_column 字段用来存储需要处理的 json 串
示例 1: 提取单个字段
假设 JSON 数据包含用户信息
{"name": "John Doe","age": 35,"email": "john@example.com"
}
- 样例数据
insert into json_test_table values (1,'{"name":"John Doe","age":35,"email":"john@example.com"}');select * from json_test_table where id = 1;
+------+---------------------------------------------------------+
| id | json_column |
+------+---------------------------------------------------------+
| 1 | {"name":"John Doe","age":35,"email":"john@example.com"} |
+------+---------------------------------------------------------+
使用 get_json_object 函数从 JSON 中提取字段:
SELECT get_json_object(json_column, '$.name') AS name FROM json_test_table where id = 1;+-----------+
| name |
+-----------+
| John Doe |
+-----------+
1 row selected (19.655 seconds)SELECT get_json_object(json_column, '$.name') AS name,get_json_object(json_column, '$.age') AS age FROM json_test_table where id = 1;
+-----------+------+
| name | age |
+-----------+------+
| John Doe | 35 |
+-----------+------+
1 row selected (19.396 seconds)
示例 2: 提取嵌套字段
在 JSON 数据中有嵌套字段的情况下:
{"user": {"name": "Alice","address": {"city": "New York","zipcode": "10001"}}
}
- 样例数据
insert into json_test_table values (2,'{"user":{"name":"Alice","address":{"city":"New York","zipcode":"10001"}}}');select * from json_test_table where id = 2;
+------+---------------------------------------------------------------------------+
| id | json_column |
+------+---------------------------------------------------------------------------+
| 2 | {"user":{"name":"Alice","address":{"city":"New York","zipcode":"10001"}}} |
+------+---------------------------------------------------------------------------+
提取嵌套字段的值:
SELECT get_json_object(json_column, '$.user.name') AS user_name,get_json_object(json_column, '$.user.address.city') AS city
FROM json_test_table where id = 2;+------------+-----------+
| user_name | city |
+------------+-----------+
| Alice | New York |
+------------+-----------+
1 row selected (19.38 seconds)
示例 3: 提取数组中的值
假设 JSON 数据包含一个数组:
{"tags": ["apple", "banana", "orange"]
}
- 样例数据
insert into json_test_table values (3,'{"tags":["apple","banana","orange"]}');select * from json_test_table where id = 3;
+------+--------------------------------------+
| id | json_column |
+------+--------------------------------------+
| 3 | {"tags":["apple","banana","orange"]} |
+------+--------------------------------------+
从数组中提取值:
SELECT get_json_object(json_column, '$.tags[0]') AS first_tag,get_json_object(json_column, '$.tags[1]') AS second_tag
FROM json_test_table where id = 3;+------------+-------------+
| first_tag | second_tag |
+------------+-------------+
| apple | banana |
+------------+-------------+
1 row selected (18.488 seconds)
示例 4: 提取数组列表长度
获取数组的长度:
-- 复用 示例3中样例数据
select * from json_test_table where id = 3;
+------+--------------------------------------+
| id | json_column |
+------+--------------------------------------+
| 3 | {"tags":["apple","banana","orange"]} |
+------+--------------------------------------+
-- 可以看到数组tags对应的值有3个SELECT size(split(get_json_object(json_column, '$.tags'), ',')) AS tags_length
FROM json_test_table
WHERE id = 3;+--------------+
| tags_length |
+--------------+
| 3 |
+--------------+
1 row selected (35.766 seconds)
示例 5:业务场景-解析公司基本信息案例
- 假设JSON数据包含公司的基本信息,比如公司名称、注册资本等字段
{"company_name": "wangting_company","registration": {"registered_capital": 1000000,"registered_date": "2020-01-01","registered_address": "123 Main St, City"}
}{"company_name":"wangting_company","registration":{"registered_capital":1000000,"registered_date":"2020-01-01","registered_address":"123 Main St, City"}}
-- 创建表
CREATE TABLE company_info (company_name STRING,registered_capital INT,registered_date STRING,registered_address STRING
) STORED AS TEXTFILE;-- 转化插入数据
INSERT INTO company_info
SELECTget_json_object(json_data, '$.company_name') AS company_name,get_json_object(json_data, '$.registration.registered_capital') AS registered_capital,get_json_object(json_data, '$.registration.registered_date') AS registered_date,get_json_object(json_data, '$.registration.registered_address') AS registered_address
FROM(SELECT '{"company_name": "wangting_company", "registration": {"registered_capital": 1000000, "registered_date": "2020-01-01", "registered_address": "123 Main St, City"}}' AS json_data) t;+----------------------------+----------------------------------+-------------------------------+----------------------------------+
| company_info.company_name | company_info.registered_capital | company_info.registered_date | company_info.registered_address |
+----------------------------+----------------------------------+-------------------------------+----------------------------------+
| wangting_company | 1000000 | 2020-01-01 | 123 Main St, City |
+----------------------------+----------------------------------+-------------------------------+----------------------------------+
1 row selected (0.411 seconds)
示例 6: 使用 LATERAL VIEW 解析数组
使用 LATERAL VIEW 和 explode 解析 JSON 数组:
-- 复用示例3样例数据
SELECT id, tag
FROM json_test_table
LATERAL VIEW explode(split(get_json_object(json_column, '$.tags'), ',')) exploded_tags AS tag
WHERE id = 3;+-----+------------+
| id | tag |
+-----+------------+
| 3 | ["apple" |
| 3 | "banana" |
| 3 | "orange"] |
+-----+------------+
3 rows selected (17.318 seconds)-- 仅展示解析数据,实际使用如需去除方括号,可以一并清洗
示例 7: 提取数组对象的值
如果数组包含对象,则提取对象的值:
{"users": [{"name": "Alice","age": 28},{"name": "Bob","age": 35}]
}{"users":[{"name":"Alice","age":28},{"name":"Bob","age":35}]}
- 样例数据
insert into json_test_table values (7,'{"users":[{"name":"Alice","age":28},{"name":"Bob","age":35}]}');select * from json_test_table where id = 7;
+------+---------------------------------------------------------------+
| id | json_column |
+------+---------------------------------------------------------------+
| 7 | {"users":[{"name":"Alice","age":28},{"name":"Bob","age":35}]} |
+------+---------------------------------------------------------------+
SELECT get_json_object(json_column, '$.users[0].name') AS user1_name,get_json_object(json_column, '$.users[1].name') AS user2_name
FROM json_test_table where id = 7;+-------------+-------------+
| user1_name | user2_name |
+-------------+-------------+
| Alice | Bob |
+-------------+-------------+
1 row selected (17.372 seconds)
示例 8: 处理日期
处理 JSON 中的日期字段:
{"event_date": "2023-11-21"
}{"event_date":"2023-11-21"}
- 样例数据
insert into json_test_table values (8,'{"event_date":"2023-11-21"}');select * from json_test_table where id = 8;
+------+-----------------------------+
| id | json_column |
+------+-----------------------------+
| 8 | {"event_date":"2023-11-21"} |
+------+-----------------------------+
SELECT get_json_object(json_column, '$.event_date') AS event_date
FROM json_test_table where id = 8;+-------------+
| event_date |
+-------------+
| 2023-11-21 |
+-------------+
1 row selected (17.436 seconds)SELECT id, CAST(get_json_object(json_column, '$.event_date') AS DATE) AS event_date,YEAR(CAST(get_json_object(json_column, '$.event_date') AS DATE)) AS event_year,MONTH(CAST(get_json_object(json_column, '$.event_date') AS DATE)) AS event_month
FROM json_test_table
WHERE id = 8;+-----+-------------+-------------+--------------+
| id | event_date | event_year | event_month |
+-----+-------------+-------------+--------------+
| 8 | 2023-11-21 | 2023 | 11 |
+-----+-------------+-------------+--------------+
1 row selected (17.363 seconds)
示例 9: 提取布尔值
提取 JSON 中的布尔字段:
{"is_active": true
}{"is_active":true}
- 样例数据
insert into json_test_table values (9,'{"is_active":true}');select * from json_test_table where id = 9;
+------+--------------------+
| id | json_column |
+------+--------------------+
| 9 | {"is_active":true} |
+------+--------------------+
SELECT get_json_object(json_column, '$.is_active') AS is_active
FROM json_test_table where id = 9;
+------------+
| is_active |
+------------+
| true |
+------------+
1 row selected (18.401 seconds)-- 使用WHERE子句根据布尔值进行条件过滤。
SELECT *
FROM json_test_table
WHERE get_json_object(json_column, '$.is_active') = 'true';+---------------------+------------------------------+
| json_test_table.id | json_test_table.json_column |
+---------------------+------------------------------+
| 9 | {"is_active":true} |
+---------------------+------------------------------+
1 row selected (17.327 seconds)
示例 10: json_tuple计算 JSON 对象数量
计算 JSON 对象中包含的键值对数量:
SELECT json_tuple(json_column, 'name', 'age') AS (name, age)
FROM json_test_table;+-----------+-------+
| name | age |
+-----------+-------+
| John Doe | 35 |
| NULL | NULL |
| NULL | NULL |
| NULL | NULL |
| NULL | NULL |
| NULL | NULL |
+-----------+-------+
6 rows selected (17.344 seconds)-- 只有id=1符合条件 不符合条件均为NULL
示例 11: 使用 json_tuple 提取值
从 JSON 对象中使用 json_tuple 提取多个字段:
{"name": "John","age": 30,"address": "New York"
}{"name":"John","age":30,"address":"New York"}
- 样例数据
insert into json_test_table values (11,'{"name":"John","age":30,"address":"New York"}');select * from json_test_table where id = 11;
+------+-----------------------------------------------+
| id | json_column |
+------+-----------------------------------------------+
| 11 | {"name":"John","age":30,"address":"New York"} |
+------+-----------------------------------------------+
SELECT json_tuple(json_column, 'name', 'age', 'address') AS (name, age, address)
FROM json_test_table where id = 11;+-------+------+-----------+
| name | age | address |
+-------+------+-----------+
| John | 30 | New York |
+-------+------+-----------+
1 row selected (17.414 seconds)
示例 12: 提取数字字段
从 JSON 中提取数字字段:
{"count": 50
}{"count":50}
- 样例数据
insert into json_test_table values (12,'{"count":50}');select * from json_test_table where id = 12;
+------+--------------+
| id | json_column |
+------+--------------+
| 12 | {"count":50} |
+------+--------------+
SELECT get_json_object(json_column, '$.count') AS count
FROM json_test_table where id = 12;+--------+
| count |
+--------+
| 50 |
+--------+
1 row selected (19.401 seconds)
示例 13: 使用 get_json_object 过滤数据
根据 JSON 中的字段值进行过滤:
SELECT *
FROM json_test_table
WHERE get_json_object(json_column, '$.age') > 30;+---------------------+----------------------------------------------------+
| json_test_table.id | json_test_table.json_column |
+---------------------+----------------------------------------------------+
| 1 | {"name":"John Doe","age":35,"email":"john@example.com"} |
+---------------------+----------------------------------------------------+
1 row selected (18.402 seconds)SELECT *
FROM json_test_table
WHERE get_json_object(json_column, '$.age') > 10;+---------------------+----------------------------------------------------+
| json_test_table.id | json_test_table.json_column |
+---------------------+----------------------------------------------------+
| 1 | {"name":"John Doe","age":35,"email":"john@example.com"} |
| 11 | {"name":"John","age":30,"address":"New York"} |
+---------------------+----------------------------------------------------+
2 rows selected (17.298 seconds)
示例 14: 处理空值
处理 JSON 数据中可能的空值:
{"status": null
}{"status":null}
- 样例数据
insert into json_test_table values (14,'{"status":null}');select * from json_test_table where id = 14;
+------+-----------------+
| id | json_column |
+------+-----------------+
| 14 | {"status":null} |
+------+-----------------+
SELECT get_json_object(json_column, '$.status') AS status
FROM json_test_table where id = 14;+---------+
| status |
+---------+
| NULL |
+---------+
1 row selected (17.345 seconds)-- 使用IS NULL或IS NOT NULL来检查字段是否为空
SELECT id, json_column
FROM json_test_table
WHERE id = 14 AND get_json_object(json_column, '$.status') IS NULL;+-----+------------------+
| id | json_column |
+-----+------------------+
| 14 | {"status":null} |
+-----+------------------+
1 row selected (17.47 seconds)-- 使用CASE语句对NULL值进行处理或者转换为其他值。
SELECT id, CASE WHEN get_json_object(json_column, '$.status') IS NULL THEN 'No Status' ELSE get_json_object(json_column, '$.status') END AS status
FROM json_test_table
WHERE id = 14;+-----+------------+
| id | status |
+-----+------------+
| 14 | No Status |
+-----+------------+
1 row selected (17.31 seconds)
示例 15: 使用 get_json_object 判断是否存在字段
判断 JSON 是否包含特定字段:
SELECT CASE WHEN get_json_object(json_column, '$.name') IS NOT NULL THEN 'Exists' ELSE 'Not Exists' END AS field_status
FROM json_test_table;
+---------------+
| field_status |
+---------------+
| Exists |
| Not Exists |
| Exists |
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
+---------------+SELECT CASE WHEN get_json_object(json_column, '$.age') IS NOT NULL THEN 'Exists' ELSE 'Not Exists' END AS field_status
FROM json_test_table;+---------------+
| field_status |
+---------------+
| Exists |
| Not Exists |
| Exists |
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
+---------------+SELECT CASE WHEN get_json_object(json_column, '$.aaaaaaaaa') IS NOT NULL THEN 'Exists' ELSE 'Not Exists' END AS field_status
FROM json_test_table;+---------------+
| field_status |
+---------------+
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
| Not Exists |
+---------------+
9 rows selected (17.337 seconds)
示例 16: 提取多层嵌套对象的值
从多层嵌套的 JSON 对象中提取值:
{"user": {"details": {"name": "Alice","age": 30}}
}{"user":{"details":{"name":"Alice","age":30}}}
- 样例数据
insert into json_test_table values (16,'{"user":{"details":{"name":"Alice","age":30}}}');select * from json_test_table where id = 16;
+------+------------------------------------------------+
| id | json_column |
+------+------------------------------------------------+
| 16 | {"user":{"details":{"name":"Alice","age":30}}} |
+------+------------------------------------------------+
SELECT get_json_object(json_column, '$.user.details.name') AS user_name,get_json_object(json_column, '$.user.details.age') AS user_age
FROM json_test_table where id = 16;+------------+-----------+
| user_name | user_age |
+------------+-----------+
| Alice | 30 |
+------------+-----------+
1 row selected (16.253 seconds)
示例 17: 提取嵌套对象数组的值
从嵌套的对象数组中提取值:
{"employees": [{"name": "Alice","department": "HR"},{"name": "Bob","department": "Engineering"}]
}{"employees":[{"name":"Alice","department":"HR"},{"name":"Bob","department":"Engineering"}]}
- 样例数据
insert into json_test_table values (17,'{"employees":[{"name":"Alice","department":"HR"},{"name":"Bob","department":"Engineering"}]}');select * from json_test_table where id = 17;
+------+----------------------------------------------------------------------------------------------+
| id | json_column |
+------+----------------------------------------------------------------------------------------------+
| 17 | {"employees":[{"name":"Alice","department":"HR"},{"name":"Bob","department":"Engineering"}]} |
+------+----------------------------------------------------------------------------------------------+
SELECT get_json_object(json_column, '$.employees[0].name') AS employee1_name,get_json_object(json_column, '$.employees[1].name') AS employee2_name
FROM json_test_table where id = 17;+-----------------+-----------------+
| employee1_name | employee2_name |
+-----------------+-----------------+
| Alice | Bob |
+-----------------+-----------------+
1 row selected (17.273 seconds)
示例 18: 提取数组对象的多个值
取数组对象的多个值
从数组对象中提取多个值:
{"items": [{"id": 1,"name": "Item 1"},{"id": 2,"name": "Item 2"}]
}{"items":[{"id":1,"name":"Item 1"},{"id":2,"name":"Item 2"}]}
- 样例数据
insert into json_test_table values (18,'{"items":[{"id":1,"name":"Item 1"},{"id":2,"name":"Item 2"}]}');select * from json_test_table where id = 18;
+------+---------------------------------------------------------------+
| id | json_column |
+------+---------------------------------------------------------------+
| 18 | {"items":[{"id":1,"name":"Item 1"},{"id":2,"name":"Item 2"}]} |
+------+---------------------------------------------------------------+
SELECT get_json_object(json_column, '$.items[0].id') AS item1_id,get_json_object(json_column, '$.items[0].name') AS item1_name,get_json_object(json_column, '$.items[1].id') AS item2_id,get_json_object(json_column, '$.items[1].name') AS item2_name
FROM json_test_table where id = 18;+-----------+-------------+-----------+-------------+
| item1_id | item1_name | item2_id | item2_name |
+-----------+-------------+-----------+-------------+
| 1 | Item 1 | 2 | Item 2 |
+-----------+-------------+-----------+-------------+
1 row selected (17.386 seconds)
示例19: json_serde解析映射数据文件的使用介绍
json_serde库提供了一种在Hive中直接将JSON格式的数据解析成表的方式,可简化处理流程。
如果现在有一个json文件:
[app@ali-wangting wangt]$ cat wangt.json
{"name":"wangting01","age":21,"email":"wangting01@example.com"}
{"name":"wangting02","age":22,"email":"wangting02@example.com"}
{"name":"wangting03","age":23,"email":"wangting03@example.com"}
{"name":"wangting04","age":24,"email":"wangting04@example.com"}
{"name":"wangting05","age":25,"email":"wangting05@example.com"}
{"name":"wangting06","age":26,"email":"wangting06@example.com"}
{"name":"wangting07","age":27,"email":"wangting07@example.com"}
{"name":"wangting08","age":28,"email":"wangting08@example.com"}
现在希望建立一张表,使得表可以直接映射上数据文件
- hive中建表
CREATE TABLE IF NOT EXISTS wangt_666_json(name string,age int,email string
)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
stored as textfile;desc wangt_json_table;
+-----------+------------+--------------------+
| col_name | data_type | comment |
+-----------+------------+--------------------+
| name | string | from deserializer |
| age | int | from deserializer |
| email | string | from deserializer |
+-----------+------------+--------------------+
- 将json文件上传至建表对应hdfs路径
[app@ali-wangting wangt]$ hdfs dfs -ls /user/hive/warehouse/wangt.db/wangt_666_json/
[app@ali-wangting wangt]$ hdfs dfs -put wangt.json /user/hive/warehouse/wangt.db/wangt_666_json/
[app@ali-wangting wangt]$ hdfs dfs -ls /user/hive/warehouse/wangt.db/wangt_666_json/
Found 1 items
-rwxrwx--x+ 2 hive hive 512 2023-12-04 16:38 /user/hive/warehouse/wangt.db/wangt_666_json/wangt.json# 也可以通过hive的sql命令行直接load数据文件
load data local inpath '/home/wangt/wangt.json' into table wangt_666_json;
- 查看表数据验证
select * from wangt_666_json;
+----------------------+---------------------+-------------------------+
| wangt_666_json.name | wangt_666_json.age | wangt_666_json.email |
+----------------------+---------------------+-------------------------+
| wangting01 | 21 | wangting01@example.com |
| wangting02 | 22 | wangting02@example.com |
| wangting03 | 23 | wangting03@example.com |
| wangting04 | 24 | wangting04@example.com |
| wangting05 | 25 | wangting05@example.com |
| wangting06 | 26 | wangting06@example.com |
| wangting07 | 27 | wangting07@example.com |
| wangting08 | 28 | wangting08@example.com |
+----------------------+---------------------+-------------------------+
8 rows selected (0.5 seconds)
可以看到数据文件8行记录,成功映射对应了hive中wangt_666_json表的8条数据
相关文章:
业务场景中Hive解析Json常用案例
业务场景中Hive解析Json常用案例 json在线工具 json格式转换在线工具 https://tool.lu/json/format格式互转: // 格式化可以合并整行显示 {"name":"John Doe","age":35,"email":"johnexample.com"}// 格式化…...
垃圾回收与内存泄漏
前端面试大全JavaScript垃圾回收与内存泄漏 🌟经典真题 🌟什么是内存泄露 🌟JavaScript 中的垃圾回收 🌟标记清除 🌟引用计数 🌟真题解答 🌟总结 🌟经典真题 请介绍一下 Jav…...
SQL Server 2016(创建数据表)
1、需求描述。 在名为“class”的数据库中创建表,表名称为“course”,其中要包含序号、课程、课程编号、学分、任课教师、上课地点、开始时间、结束时间、备注等列。 设置各个字段的数据类型。其中,"序号"列为标识列,从…...
mysql配置文件低于8.0版本慎用(头部声明的路径请自行替换或删减)(干货)
[mysqld] character-set-server utf8mb4 collation-server utf8mb4_general_ci init_connectSET NAMES utf8mb4datadir/data/mysql/data socket/data/mysql/mysql.socklog-error/data/mysql/log/mysql_error.log pid-file/data/mysql/mysqld.pidserver_id1 #如果做集群不同my…...
给WordPress文章添加广告位
/* * WordPress 在文章内容中间插入广告//由www.wwttl.com提供学习 */ //在文章内容的第二段后面插入广告 add_filter( the_content, prefix_insert_post_ads ); function prefix_insert_post_ads( $content ) { $ad_code <div>广告代码放这里</div>;if ( is_sing…...
[GPT-1]论文实现:Improving Language Understanding by Generative Pre-Training
Efficient Graph-Based Image Segmentation 一、完整代码二、论文解读2.1 GPT架构2.2 GPT的训练方式Unsupervised pre_trainingSupervised fine_training 三、过程实现3.1 导包3.2 数据处理3.3 模型构建3.4 模型配置 四、整体总结 论文:Improving Language Understa…...
23种设计模式之C++实践(一)
23种设计模式之C++实践 1. 简介2. 基础知识3. 设计模式(一)创建型模式1. 单例模式——确保对象的唯一性1.2 饿汉式单例模式1.3 懒汉式单例模式比较IoDH单例模式总结2. 简单工厂模式——集中式工厂的实现简单工厂模式总结3. 工厂方法模式——多态工厂的实现工厂方法模式总结4.…...
华为OD机试 - 园区参观路径(Java JS Python C)
题目描述 园区某部门举办了Family Day,邀请员工及其家属参加; 将公司园区视为一个矩形,起始园区设置在左上角,终点园区设置在右下角; 家属参观园区时,只能向右和向下园区前进,求从起始园区到终点园区会有多少条不同的参观路径。 输入描述 第一行为园区的长和宽; 后…...
【ARM Trace32(劳特巴赫) 使用介绍 12 -- Trace32 常用命令之 d.dump | data.dump 介绍】
文章目录 Trace32 常用命令之 d.dump | data.dump 介绍1 字节显示 (Byte)4 字节显示(word)8 字节显示(通常long)十进制显示显示指定列数显示地址范围内的值 Trace32 常用命令之 d.dump | data.dump 介绍 在 TRACE32 调试环境中&a…...
【Git】Git撤销操作
记录一下,方便后续查找,不全,后续再做补充。 丢弃当前工作区未提交的修改 # 丢弃所有修改 git checkout .# 丢弃某个文件修改 git checkout 文件名丢弃本地已经提交的代码 (1)撤销最近一次提交 如果我们在最近一次提…...
改造python3中的http.server为简单的文件上传下载服务
改造 修改python3中的http.server.SimpleHTTPRequestHandler,实现简单的文件上传下载服务 simple_http_file_server.py: # !/usr/bin/env python3import datetime import email import html import http.server import io import mimetypes import os …...
Fiddler抓包工具之fiddler的composer可以简单发送http协议的请求
一,composer的详解 右侧Composer区域,是测试接口的界面: 相关说明: 1.请求方式:点开可以勾选请求协议是get、post等 2.url地址栏:输入请求的url地址 3.请求头:第三块区域可以输入请求头信息…...
14、pytest像用参数一样使用fixture
官方实例 # content of test_fruit.py import pytestclass Fruit:def __init__(self, name):self.name nameself.cubed Falsedef cube(self):self.cubed Trueclass FruitSalad:def __init__(self, *fruit_bowl):self.fruit fruit_bowlself._cube_fruit()def _cube_fruit(s…...
C++ Primer Plus第十三章笔记
目录 基类 构造函数:访问权限的考虑 1.2 派生类和基类之间的特殊关系 继承:is-a关系 多态公有继承 静态联编和动态联编 指针和引用类型的兼容性 虚成员函数和动态联编 虚函数的注意事项 构造函数 析构函数 友元 没有重新定义 重新定义将隐…...
【JavaEE】单例模式
作者主页:paper jie_博客 本文作者:大家好,我是paper jie,感谢你阅读本文,欢迎一建三连哦。 本文于《JavaEE》专栏,本专栏是针对于大学生,编程小白精心打造的。笔者用重金(时间和精力)打造&…...
第十五届蓝桥杯模拟赛(第二期 C++)
俺自己做的噢,还未核实答案,若有差错,望斧正。 第一题 小蓝要在屏幕上放置一行文字,每个字的宽度相同。小蓝发现,如果每个字的宽为 36 像素,一行正好放下 30 个字,字符之间和前后都没有任何空隙…...
关于Unity中字典在Inspector的显示
字典在Inspector的显示 方法一:实现ISerializationCallbackReceiver接口 《unity3D游戏开发第二版》记录 在编辑面板中可以利用序列化监听接口特性对字典进行序列化。 主要继承ISerializationCallbackReceiver接口 实现OnAfterDeserialize() OnBeforeSerialize() …...
使用Plex结合cpolar搭建本地私人媒体站并实现远程访问
文章目录 1.前言2. Plex网站搭建2.1 Plex下载和安装2.2 Plex网页测试2.3 cpolar的安装和注册 3. 本地网页发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1.前言 用手机或者平板电脑看视频,已经算是生活中稀松平常的场景了,特别是各…...
svn合并冲突时每个选项的含义
合并冲突时每个选项的含义 - 这个图片是 TortoiseSVN(一个Subversion(SVN)客户端)的合并冲突解决对话框。当你尝试合并两个版本的文件并且出现差异时,你需要解决这些差异。这个对话框提供了几个选项来处理合并冲突&…...
指针、数组与函数例题3
1、字符串复制 题目描述 设计函数实现字符串复制功能,每个字符串长度不超过100,不要使用系统提供的strcpy函数 输入要求 从键盘读入一个字符串到数组b中,以换行符结束 输出要求 将内容复制到另一个数组a中,并分别输出数组a和…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
