re:Invent大会,亚马逊云科技为用户提供端到端的AI服务
11月末,若是你降落在拉斯维加斯麦卡伦国际机场,或许会在大厅里看到一排排AI企业和云厂商相关的夸张标语。走向出口的路上,你的身边会不断穿梭过穿着印有“AI21Lab”“Anthropic”等字样的AI企业员工。或许,你还会被机场工作人员主动询问:“你是来参加亚马逊云科技re:Invent大会的吗?”
美国当地时间11月26日至12月1日,为期5天的re:Invent大会,将“赌城”暂时变成了AI开发者们的朝圣地——会场所在的威斯人酒店,汇聚了超过5万参会者。
作为大模型的诞生地,美国AI企业的动向,在某种意义上是AI发展的风向标。机场的横幅,已经点明了当下AI与云密不可分的关系。而在亚马逊云科技re:Invent的展会上,能看到来自AI算力层、模型层、应用层的各类企业。
作为东道主的亚马逊云科技,在大会上发了两款自研的芯片、一款企业AI助手,更新了从数据库到量子计算的一系列服务。
主会场欢呼最热烈的两个环节,莫过于英伟达CEO黄仁勋、OpenAI老对手Anthropic CEO Dario Amodei登台,分别与亚马逊云科技CEO Adam Selipsky宣布了云计算和模型服务的新合作。
相较于OpenAI开发者大会引发的创业者恐慌,在re:Invent的展会中,能看到亚马逊云科技与客户、开发者,在模型服务、数据库、安全方案等方面同台竞技:亚马逊云科技愈发瞄准客户精细化的需求和垂直场景,而处于中间层的To B厂商们,正在向上下游延伸,提供端到端的服务。
为何能够形成这一种纵横捭阖的AI业态?无论是亚马逊云科技,还是展商,都给出了同样的答案:AI很初期,机会还很多。
云厂商,不断降低客户“买水”的门槛
“我需要一些烹饪建议,我将输入3种食材和烹饪的时间,请给我食谱和详细的步骤。”几秒后,一个具有食谱生成功能的界面出现在了屏幕上。这是re:Invent展会上,AWS推出的0代码App生成器PartyRock。
11月6日,OpenAI发布的GPT Builder,让AI App的开发门槛,降到了“搭积木”的程度。通过将应用开发程序封装进不同的流程模块,用户可以在GPT Builder中用设置参数的方式完成应用的开发。
怎样的开发模式,才能做到比GPTs的门槛更低?亚马逊云科技用PartyRock给出的答案是真生的“0代码”,只要一句话,就能搞定所有的开发流程。“无代码、可微调、可商用,还支持多系统。”
除了亚马逊云科技自研的模型Titan,用户可以选择基于Claude、Llama等主流模型,作为AI应用的底座,并且设置相应的参数。
而相较于已经展露出成为操作系统的野心的OpenAI,亚马逊云科技的策略是和互联网时代的主流操作系统成为盟友,PartyRock生成的AI应用,既可以上架IOS和安卓等主流操作系统,也能作为一个网站发布。
PartyRock可以被视作亚马逊云科技在2023年4月推出的AI服务Amazon Bedrock的“娱乐版”。至于为什么要发布这样一个易上手的AI App生成产品,亚马逊云科技的意图也很明显:收割一批学生、白领等非技术背景的用户。
如今美国的AI企业在争相向开发者“卖水”、建立开发者生态的同时,也在不断降低AI工具的使用门槛。不过,相较于PartyRock提供的轻量化的To C应用的开发环境,企业用户的需求则复杂得多。
如今多数企业对AI应用的需求,是快速复制专家知识。亚马逊云科技在大会上发布的AI工作助手AmazonQ,一方面作为亚马逊云科技的客服和业务经理,为企业答疑解惑,并提供解决方案,另一方面也能连接企业的业务数据、信息和系统,帮助企业创建专属的AI Agent。
相较于微软此前发布的Copilot,Q的定制化属性更为突出。当企业客户部署自己的Agent时,Q会生成一个网络应用程序,管理员工的访问权限,以此保护企业信息安全,并提供更准确的服务。比如针对销售,Q将优先综合销售相关的业务数据和资料,在进行会议摘要时,Q也会将销售部分的内容优先进行总结。
对AI而言,没有“无用”的数据
要提高自动驾驶的安全性,什么样的驾驶数据是有用的?
在re:Invent展会上,若是进入亚马逊云科技的模拟驾舱,或许对不同数据发挥的价值就有了直观的了解。
这个装载道路摄像头,并在仪表盘、方向盘、脚踏板上布满传感器的模拟驾舱,通过AWS亚马逊云科技的IoT(物联网)服务,将车内外数据传输到数据库,并可视化呈现。
模拟舱的试验,是数据对AI的重要性的缩影。在re:Invent的现场能明显感受到,AI是主角,而“Data”又是AI的主角。随着AI的发展,一方面,BI(商业智能)、Text to SQL(文生SQL)等数据相关的AI应用场景,已经被初步验证。另一方面,各行业被要求利用更多的业务数据,去洞察和满足用户愈发精细化的需求。愈来愈多的企业意识到,不存在“无用”的数据。如何让所有的业务数据发挥价值,成了数据服务商提供服务的重点。
比如亚马逊云科技的数据管理服务DataZone,在大会上推出了AI推荐(AI Recommendations)功能,将原有企业找数据的过程,转化为让具有价值的数据,主动找到企业。企业只需输入自己的业务需求,DataZone就能够提供相应的数据索引,并为企业提供使用数据的建议。
根据不同的数据生态,美国AI公司们在云服务方案的选择上,也更加精细化。
经过十多年的发展,美国云厂商已经培养出了较为鲜明的业务优势。几名参展的客户总结:亚马逊云科技注重全球化和大而全的服务,微软Azure注重平台化和定制化的服务,谷歌云则注重于垂直场景。
端到端,不只是巨头游戏
在美国,端到端的AI服务不仅仅是云巨头的游戏。
不少数据库、中间层的厂商都开始建立从数据处理、AI应用定制、安全管理等全流程的AI服务,更甚者与大厂共分蛋糕,提供AI应用开发工具或者框架。
“Your New AI Copilot for Backup(数据备份的AI助手)。”在展会上,Druva一组标语,宣告自己发布了新的AI助手Dru,并可为客户提供定制化服务。
在展会上,技术服务商IBM秀出的“肌肉”,是几乎所有大厂都在布局的生成式AI训练、微调、部署服务。这项名为watsonx.ai的功能,也将Prompt Engineering(提示词工程)、训练、调整和部署等模型训练流程,封装到低代码的模块中,让企业能够较低门槛地开发AI模型,和构建AI应用。
估值高达430亿美元、被英伟达投资的数据处理超级独角兽Databricks,不仅搬来了从数据管理到分析的一整套解决方案,还把与客户合作研发的AI写真生成应用搬到了展会现场。
目前,国内大部分AI写真应用仍需上传20张不同角度的脸部照片作为机器学习的“养料”。但Databricks这位写真领域的“外行人”,却拿出了一套只需现场拍摄一张正面照、5分钟内生成照片的AI写真方案。除却风格和审美差异,Databricks生成写真的面部细节并不亚于国内AI写真应用。
而Databricks的老对手,市值超700亿美元的Snowflakes,则把一整套动捕滑雪游戏搬到了展会现场。
不过,想要进入中国市场,AI外企们寻找合适的商业模式依然是难点。为何“重复造轮子”,依然能够有繁荣的业态?美国AI玩家们给出的答案是:开放的心态+开放的生态。
开源解决方案提供商Red Hat,做的是开源生态的“搬运工”,为企业提供开源技术方案的选择、微调和部署服务。即便开源社区Huggingface也提供同样的服务,但双方依然保持了合作关系。
可以看到亚马逊云科技的大多客户,都在做自己的“AmazonQ”(助手),自己的“Qdrant”(亚马逊云科技的向量数据库),甚至自己的“Bedrock”(亚马逊云科技的AI开发平台)。此前已经发布了云计算服务DGX Cloud的英伟达,这次也将首个配置了最新GPU GH200 NVL32的DGX Cloud,搭在了亚马逊云科技的云上。
刚刚给微软Ignite开发者大会捧场的英伟达CEO黄仁勋,也现身亚马逊云科技的主会场。
Matt Garman说:”作为客户的MongoDB、Snowflake,都是亚马逊云科技数据库Redshift的有力竞争者,大家都在合作和竞争中相互学习对方的优势”。若是站在供应商的角度,加入生态的合作伙伴越多,亚马逊云科技就能够满足用户更多元的需求。
相关文章:

re:Invent大会,亚马逊云科技为用户提供端到端的AI服务
11月末,若是你降落在拉斯维加斯麦卡伦国际机场,或许会在大厅里看到一排排AI企业和云厂商相关的夸张标语。走向出口的路上,你的身边会不断穿梭过穿着印有“AI21Lab”“Anthropic”等字样的AI企业员工。或许,你还会被机场工作人员主…...

23、什么是卷积的 Feature Map?
这一节介绍一个概念,什么是卷积的 Feature Map? Feature Map, 中文称为特征图,卷积的 Feature Map 指的是在卷积神经网络(CNN)中,通过卷积这一操作从输入图像中提取的特征图。 上一节用示意动图介绍了卷积算…...

安装获取mongodb
目录 本地安装 获取云上资源 获取Atlas免费数据库 本地连接数据库 在Atlas中连接数据库 本文适合初学者或mongodb感兴趣的同学来准备学习测试环境,或本地临时开发环境。mongodb是一个对用户非常友好的数据库。这种友好,不仅仅体现在灵活的数据结构和…...

【模电】基本共射放大电路的工作原理及波形分析
基本共射放大电路的工作原理及波形分析 在上图所示的基本放大电路中,静态时的 I B Q I\tiny BQ IBQ、 I C Q I\tiny CQ ICQ、 U C E Q U\tiny CEQ UCEQ如下图( b )、( c )中虚线所标注。 ( a ) u i 的波形( b ) i B …...

Oracle:左连接、右连接、全外连接、(+)号详解
目录 Oracle 左连接、右连接、全外连接、()号详解 1、左外连接(LEFT OUTER JOIN/ LEFT JOIN) 2、右外连接(RIGHT OUTER JOIN/RIGHT JOIN) 3、全外连接(FULL OUTER JOIN/FULL JOIN࿰…...
virtualbox上win7企业微信CPU高问题
问题 linux Opensuse上的Virtualbox安装有win7, win7中跑企业微信CPU占用很高。一杀掉它,CPU占用就立马降下来了。 定位 当cpu占用高时,打开任务管理器,可以定位到svhost.exe占用很高, 优化 右键点击计算机–管理–服务和应用…...
【华为OD题库-055】金字塔/微商-java
题目 微商模式比较典型,下级每赚100元就要上交15元,给出每个级别的收入,求出金字塔尖上的人收入。 输入描述 第一行输入N,表示有N个代理商上下级关系 接下来输入N行,每行三个数:代理商代号 上级代理商代号 代理商赚的钱…...

OpenVINO异步Stable Diffusion推理优化方案
文章目录 Stable Diffusion 推理优化背景技术讲解:异步优化方案思路:异步推理优化原理OpenVINO异步推理Python API同步和异步实现方式对比 oneflow分布式调度优化优势:实现思路 总结: Stable Diffusion 推理优化 背景 2022年&…...

51单片机的智能加湿器控制系统【含proteus仿真+程序+报告+原理图】
1、主要功能 该系统由AT89C51单片机LCD1602显示模块DHT11湿度传感器模块继电器等模块构成。主要适用于智能自动加湿器、湿度保持、湿度控制等相似项目。 可实现基本功能: 1、LCD1602液晶屏实时显示湿度信息 2、DHT11采集湿度 3、按键可以调节适宜人体湿度的阈值范围࿰…...

NoSql非关系型数据库
前言:Nosql not only sql,意即“不仅仅是sql”,泛指非关系型数据库。这些类型的数据存储不需要固定的模式(当然也有固定的模式),无需多余的操作就可以横向扩展。NoSql数据库中的数据是使用聚合模型来进行处…...

抖音集团面试挂在2面,复盘后,决定二战.....
先说下我基本情况,本科不是计算机专业,现在是学通信,然后做图像处理,可能面试官看我不是科班出身没有问太多计算机相关的问题,因为第一次找工作,字节的游戏专场又是最早开始的,就投递了…...
每个.NET开发都应掌握的C#处理文件系统I/O知识点
上篇文章讲述了C#多线程知识点,本文将介绍C#处理文件的知识点。在.NET开发领域,文件系统I/O是一个至关重要的主题,尤其是在处理文件、目录和数据存储方面。C#作为.NET平台的主要编程语言,提供了丰富而强大的文件系统I/O功能&#…...

vue3 中使用 sse 最佳实践,封装工具
工具 // 接受参数 export interface SSEChatParams {url: string,// sse 连接onmessage: (event: MessageEvent) > void,// 处理消息的函数onopen: () > void,// 建立连接触发的事件finallyHandler: () > void,// 相当于 try_finally 中的 finally 部分,不…...

OpenCV快速入门【完结】:总目录——初窥计算机视觉
文章目录 前言目录1. OpenCV快速入门:初探2. OpenCV快速入门:像素操作和图像变换3. OpenCV快速入门:绘制图形、图像金字塔和感兴趣区域4. OpenCV快速入门:图像滤波与边缘检测5. OpenCV快速入门:图像形态学操作6. OpenC…...

车企数据治理实践案例,实现数据生产、消费的闭环链路 | 数字化标杆
随着业务飞速发展,某汽车制造企业业务系统数量、复杂度和数据量都在呈几何级数的上涨,这就对于企业IT能力和IT架构模式的要求越来越高。加之企业大力发展数字化营销、新能源车等业务,希望通过持续优化客户体验,创造可持续发展的数…...

深入学习锁--Lock各种使用方法
一、什么是Lock Lock是一个接口,通常所说的可重入锁是指Lock的一个实现子类ReentrantLock 二、Lock实现步骤: ①创建锁对象Lock lock new ReentrantLock(); ②加锁lock.lock(); ③释放锁lock.unlock(); import java.util.concurrent.locks.Lock; import java.util…...

计算机毕设:基于机器学习的生物医学语音检测识别 附完整代码数据可直接运行
项目视频讲解: 基于机器学习的生物医学语音检测识别 完整代码数据可直接运行_哔哩哔哩_bilibili 运行效果图: 数据展示: 完整代码: #导入python的 numpy matplotlib pandas库 import pandas as pd import numpy as np import matplotlib.pyplot as plt #绘图 import se…...

VMware安装Ubuntu系统(Server端,Desktop端步骤一样)
天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...

Navicat 与 华为云 GaussDB 合作再升级,赋能 GaussDB 分布式数据库
2023 年第三季度,Navicat 首次支持了华为云 GaussDB 主备版数据库。经过双方团队进一步的深化合作,Navicat 完成了 GaussDB 分布式的研发适配工作,赋能 GaussDB 全域数据库产品。 GaussDB 数据库分为主备版和分布式版两种模式。主备版适用于…...

【Docker】从零开始:13.Docker安装tomcat
Docker】从零开始:13.Docker安装Tomcat 下载Tomcat镜像启动Tomcat镜像新版本Tomcat修改访问Tomact首页 下载Tomcat镜像 [rootdocker ~]# docker pull tomcat Using default tag: latest latest: Pulling from library/tomcat 0e29546d541c: Pull complete 9b829c7…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...