当前位置: 首页 > news >正文

NoSql非关系型数据库

前言:Nosql = not only sql,意即“不仅仅是sql”,泛指非关系型数据库。这些类型的数据存储不需要固定的模式(当然也有固定的模式),无需多余的操作就可以横向扩展。NoSql数据库中的数据是使用聚合模型来进行处理的,聚合模型主要分为:KV键值对,BSON,列族,图形,时序,向量等几种数据库结构。常见的NoSQL数据库有redis、MongoDB、Memcache、HBase、Clickhouse、Doris、Starlocks、Hive、BigTable、Cassandra、CouchDB、Neo4J、InfluxDBX、Prometheus等。


1、 数据库共有2种类型

关系型数据库和非关系型数据库 

(1)关系数据库

MySQL、MariaDB(MySQL的代替品)、PostgreSQL、Microsoft Access、Google Fusion Tables、SQLite、DB2、FileMaker、Oracle、SQL Server、INFORMIX、Sybase、dBASE、Clipper、FoxPro、foshub。

几乎所有的数据库管理系统都配备了一个开放式数据库连接(ODBC)驱动程序,令各个数据库之间得以互相集成。

(2)非关系型数据库(NoSQL)

redis、MongoDB、Memcache、HBase、Clickhouse、Doris、Starlocks、Hive、BigTable、Cassandra、CouchDB、Neo4J、InfluxDBX、Prometheus


2、关系型数据库和非关系型数据库的区别

(1)关系型数据库最典型的数据结构是表,由二维表及其之间的联系所组成的一个数据组织
优点:

  • 易于维护:都是使用表结构,格式一致;

  • 使用方便:SQL语言通用,可用于复杂查询;

  • 复杂操作:支持SQL,可用于一个表以及多个表之间非常复杂的查询。

缺点:

  • 读写性能比较差,尤其是海量数据的高效率读写;

  • 固定的表结构,灵活度稍欠;

  • 高并发读写需求,传统关系型数据库来说,硬盘I/O是一个很大的瓶颈。

(2)非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合,可以是文档或者键值对等。
优点:

  • 格式灵活:存储数据的格式可以是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,使用灵活,应用场景广泛,而关系型数据库则只支持基础类型。

  • 速度快:nosql可以使用硬盘或者随机存储器作为载体,而关系型数据库只能使用硬盘;

  • 高扩展性;

  • 成本低:nosql数据库部署简单,基本都是开源软件。

缺点:

  • 不提供sql支持,学习和使用成本较高;

  • 无事务处理;

  • 数据结构相对复杂,复杂查询方面稍欠。


3、NoSql数据库是什么?

NoSQL(Not only SQL)是对不同于传统的关系数据库的数据库管理系统的统称,即广义地来说可以把所有不是关系型数据库的数据库统称为NoSQL。

NoSQL 数据库专门构建用于特定的数据模型,并且具有灵活的架构来构建现代应用程序。NoSQL 数据库使用各种数据模型来访问和管理数据。这些类型的数据库专门针对需要大数据量、低延迟和灵活数据模型的应用程序进行了优化,这是通过放宽其他数据库的某些数据一致性限制来实现的。

数十年来,用于应用程序开发的主要数据模型是由关系数据库(如 Oracle、DB2、SQL Server、MySQL 和 PostgreSQL)使用的关系数据模型。直到近十几年,才开始大规模采用和使用其他数据模型。为了对这些新类别的数据库和数据模型进行区分和分类,创造了术语“NoSQL”。通常术语“NoSQL”与“非关系”可互换使用。   


4、NoSql数据结构类型

NoSql中的数据是使用聚合模型来进行处理的。聚合模型主要分为:KV键值对,BSON,列族,图形等几种方式

  • KV键值对:就是我们平常使用的map那样的存储模式

  • BSON:在MongoDB中常用的一种数据类型,是一种类json的一种二进制形式的存储格式,简称binary json,它和json一样,支持内嵌的文档对象和数组对象

  • 列族:按列存储数据。最大的特点是方便存储结构和半结构化数据,方便做数据压缩,对针对某一列或者是某几列的查询有非常大的IO优势

  • 图形:不是放图形的,放的是关系,比如:朋友圈社交网络,广告推荐系统等,专注于构建关系图谱


5、NoSql数据库的分类

(1)KV键值对数据库

   临时性键值存储:Memcached,Redis

   永久性键值存储:ROMA,Redis 

应用场景:内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等等

数据模型:Key指向Value的键值对,通常用HashTable来实现

优点:查找速度快

缺点:数据无结构化,通常只被当做字符串或者是二进制数据

(2)面向文档的数据库:MongoDB,CouchDB

    Mongodb是一个基于分布式文件存储的数据库,由c++语言编写。 为web应用提供可扩展的高性能数据存储解决方案,是一个介于关系数据库和非关系数据库之间的产品,是非关系数据中功能最丰富,最像关系数据库的

应用场景:WEB应用(与key-value类似,value是结构化的,不同的是数据库能够了解到value的内容)

数据模型:Key-Value对应的键值对,Value是结构化的数据

优点:数据结构要求不严格,表结构可变,不需要像关系型数据库一样需要预先定义表结构

缺点:查询性能不高,而且缺乏统一的查询语法

(3)面向列的数据库:Cassandra,HBase

应用场景:分布式的文件系统

数据模型:以列簇式存储,将一列数据存储在一起

优点:查找速度快,可扩展性强,更容易进行分布式扩展

缺点:功能相对局限

(4)面向图形的数据库:Neo4J,InfoGrid

应用场景:社交网络,推荐系统等,专注于构建关系图谱

数据模型:图结构

优点:利用图结构相关算法。比如最短路径寻址,N度关系查找等等。

缺点:很多时候要对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群方案。


6、NoSql数据库的优点

  • 易扩展:nosql数据库种类繁多,但是一个共同的特点都是去掉关系型数据库的关系型特性数据之间无关系,这样就非常容易扩展,也无形之间,在架构层面上带来了可扩展的能力

  • 大数据量和高性能:Nosql数据库都具有非常高的读写能力,尤其在大数据量下,同样表现优秀,这得益于它的无关系型,数据库的结构简单。一般mysql使用query cache,每次表的更新cache就会失效,这是一种大粒度的cache,在针对web2.0的交互频繁的应用,cache性能不高,而nosql的cache是记录级的,是一种细粒度的cache,所以nosql在这个层面上来说就要性能高很多了

  • 多样灵活的数据模型:Nosql无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式,而在关系数据库里,增删字段是一件非常麻烦的事情,如果是非常大数据量的表,增加字段简直就是一个噩梦

  • 高可用:NoSQL在不太影响性能的情况下,就可以方便地实现高可用对的架构,有些产品通过复制模型也能实现高可用。


7、关系型数据库和非关系型数据库的对比

既然Oracle,MySQL等传统的关系型数据库非常成熟并且已经大规模的商用,为什么还要用NoSql呢?

主要是由于随着互联网的发展,数据量越来越大,对性能的要求越来越高,传统数据库存在着先天性的缺陷,即单机(单库)性能瓶颈,并且扩展困难。这样既有单机瓶颈,却又扩展困难,自然无法满足日益增长的海量数据存储及其性能要求,所以才会出现各种各样的NoSql产品,NoSql的根本性优势在于云计算时代,简单,易于大规模分布式扩展,并且读写性能极高。

 看下两者的对比:


参考链接:

NoSQL数据库简介 - 知乎

相关文章:

NoSql非关系型数据库

前言:Nosql not only sql,意即“不仅仅是sql”,泛指非关系型数据库。这些类型的数据存储不需要固定的模式(当然也有固定的模式),无需多余的操作就可以横向扩展。NoSql数据库中的数据是使用聚合模型来进行处…...

抖音集团面试挂在2面,复盘后,决定二战.....

先说下我基本情况,本科不是计算机专业,现在是学通信,然后做图像处理,可能面试官看我不是科班出身没有问太多计算机相关的问题,因为第一次找工作,字节的游戏专场又是最早开始的,就投递了&#xf…...

每个.NET开发都应掌握的C#处理文件系统I/O知识点

上篇文章讲述了C#多线程知识点,本文将介绍C#处理文件的知识点。在.NET开发领域,文件系统I/O是一个至关重要的主题,尤其是在处理文件、目录和数据存储方面。C#作为.NET平台的主要编程语言,提供了丰富而强大的文件系统I/O功能&#…...

vue3 中使用 sse 最佳实践,封装工具

工具 // 接受参数 export interface SSEChatParams {url: string,// sse 连接onmessage: (event: MessageEvent) > void,// 处理消息的函数onopen: () > void,// 建立连接触发的事件finallyHandler: () > void,// 相当于 try_finally 中的 finally 部分,不…...

OpenCV快速入门【完结】:总目录——初窥计算机视觉

文章目录 前言目录1. OpenCV快速入门:初探2. OpenCV快速入门:像素操作和图像变换3. OpenCV快速入门:绘制图形、图像金字塔和感兴趣区域4. OpenCV快速入门:图像滤波与边缘检测5. OpenCV快速入门:图像形态学操作6. OpenC…...

车企数据治理实践案例,实现数据生产、消费的闭环链路 | 数字化标杆

随着业务飞速发展,某汽车制造企业业务系统数量、复杂度和数据量都在呈几何级数的上涨,这就对于企业IT能力和IT架构模式的要求越来越高。加之企业大力发展数字化营销、新能源车等业务,希望通过持续优化客户体验,创造可持续发展的数…...

深入学习锁--Lock各种使用方法

一、什么是Lock Lock是一个接口,通常所说的可重入锁是指Lock的一个实现子类ReentrantLock 二、Lock实现步骤: ①创建锁对象Lock lock new ReentrantLock(); ②加锁lock.lock(); ③释放锁lock.unlock(); import java.util.concurrent.locks.Lock; import java.util…...

计算机毕设:基于机器学习的生物医学语音检测识别 附完整代码数据可直接运行

项目视频讲解: 基于机器学习的生物医学语音检测识别 完整代码数据可直接运行_哔哩哔哩_bilibili 运行效果图: 数据展示: 完整代码: #导入python的 numpy matplotlib pandas库 import pandas as pd import numpy as np import matplotlib.pyplot as plt #绘图 import se…...

VMware安装Ubuntu系统(Server端,Desktop端步骤一样)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...

Navicat 与 华为云 GaussDB 合作再升级,赋能 GaussDB 分布式数据库

2023 年第三季度,Navicat 首次支持了华为云 GaussDB 主备版数据库。经过双方团队进一步的深化合作,Navicat 完成了 GaussDB 分布式的研发适配工作,赋能 GaussDB 全域数据库产品。 GaussDB 数据库分为主备版和分布式版两种模式。主备版适用于…...

【Docker】从零开始:13.Docker安装tomcat

Docker】从零开始:13.Docker安装Tomcat 下载Tomcat镜像启动Tomcat镜像新版本Tomcat修改访问Tomact首页 下载Tomcat镜像 [rootdocker ~]# docker pull tomcat Using default tag: latest latest: Pulling from library/tomcat 0e29546d541c: Pull complete 9b829c7…...

风控规则引擎(一):Java 动态脚本

风控规则引擎(一):Java 动态脚本 日常场景 共享单车会根据微信分或者芝麻分来判断是否交押金汽车租赁公司也会根据微信分或者芝麻分来判断是否交押金在一些外卖 APP 都会提供根据你的信用等级来发放贷款产品金融 APP 中会根据很复杂规则来判…...

第五十六天|583. 两个字符串的删除操作 72. 编辑距离

583. 两个字符串的删除操作 可以求出最大子序列然后用字符串长度去减&#xff0c;也可以用删除的思路&#xff0c;如下&#xff1a; class Solution { public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()1,vector<int…...

java中Lists.newArrayList和new ArrayList的详细区别?

下面是对Lists.newArrayList()和new ArrayList<>()的详细区别进行举例说明&#xff1a; 创建具有初始数据的列表&#xff1a; java Copy code import com.google.common.collect.Lists; List<String> list1 Lists.newArrayList("apple", "banana…...

从图片或PDF文件识别表格提取内容的简单库img2table

img2table是一个基于OpenCV 图像处理的用于 PDF 和图像的表识别和提取 Python库。由于其设计基于神经网络的解决方案&#xff0c;提供了一种实用且更轻便的替代方案&#xff0c;尤其是在 CPU 上使用时。 该库的特点&#xff1a; 识别图像和PDF文件中的表格&#xff0c;包括在表…...

CSV文件中使用insert 函数在指定列循环插入不同数据

文章目录 一、系统、工具要求二、需求三、代码实现&#xff1a;四、核心代码解读五、逐行更改某一列数据六&#xff1a;实现在文件的末尾增加指定内容列 一、系统、工具要求 pandaspythoncsv Windows 系统 二、需求 我有两个文件&#xff1a; 文件一&#xff1a;subject_ma…...

【华为OD题库-064】最小传输时延I-java

题目 某通信网络中有N个网络结点&#xff0c;用1到N进行标识。网络通过一个有向无环图.表示,其中图的边的值表示结点之间的消息传递时延。 现给定相连节点之间的时延列表times[]{u&#xff0c;v&#xff0c; w)&#xff0c;其中u表示源结点&#xff0c;v表示目的结点&#xff0…...

全文检索[ES系列] - 第495篇

历史文章&#xff08;文章累计490&#xff09; 《国内最全的Spring Boot系列之一》 《国内最全的Spring Boot系列之二》 《国内最全的Spring Boot系列之三》 《国内最全的Spring Boot系列之四》 《国内最全的Spring Boot系列之五》 《国内最全的Spring Boot系列之六》 M…...

【预计IEEE出版|EI征稿通知】第六届下一代数据驱动网络国际学术会议 (NGDN 2024)

第六届下一代数据驱动网络国际学术会议 (NGDN 2024) The Sixth International Conference on Next Generation Data-driven Networks 2024年4月26-28日 | 中国沈阳 基于前几届在英国埃克塞特 (ISPA 2020) 、中国沈阳 (TrustCom 2021) 和中国武汉 (IEEETrustCom-2022) 成功举…...

C++软件在Win平台运行总结

Windows平台&#xff1a; 1.需要安装运行库&#xff1a;无论是exe还是动态库用的哪种平台工具集(visual2010-visual2019)进行编译&#xff0c;需要安装对应的运行时库vc_redist.x64.exe/vc_redist.x86.exe。比如Exe用的是VisualStdio2010工具集编译&#xff0c;其中链接的一个…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时&#xff0c;需要使用外部低速晶振...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接&#xff1a;【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...