当前位置: 首页 > news >正文

第五十六天|583. 两个字符串的删除操作 72. 编辑距离

583. 两个字符串的删除操作

可以求出最大子序列然后用字符串长度去减,也可以用删除的思路,如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size()+1,0));for(int i=1;i<=word1.size();i++){dp[i][0]=i;}for(int i=1;i<=word2.size();i++){dp[0][i]=i;}for(int i=1;i<=word1.size();i++){for(int j=1;j<=word2.size();j++){if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];else dp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1);}}return dp.back().back();}
};

相等就和两个对比之前的串不变,不相等可以模拟一个串删除一个字符的操作

72. 编辑距离

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size()+1,0));for(int i=1;i<=word1.size();i++){dp[i][0]=i;}for(int i=1;i<=word2.size();i++){dp[0][i]=i;}for(int i=1;i<=word1.size();i++){for(int j=1;j<=word2.size();j++){if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];else {dp[i][j]=min(dp[i-1][j-1]+1,min(dp[i][j-1]+1,dp[i-1][j]+1));}}}return dp.back().back();}
};

min里分别是,替换,插入,删除

相关文章:

第五十六天|583. 两个字符串的删除操作 72. 编辑距离

583. 两个字符串的删除操作 可以求出最大子序列然后用字符串长度去减&#xff0c;也可以用删除的思路&#xff0c;如下&#xff1a; class Solution { public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()1,vector<int…...

java中Lists.newArrayList和new ArrayList的详细区别?

下面是对Lists.newArrayList()和new ArrayList<>()的详细区别进行举例说明&#xff1a; 创建具有初始数据的列表&#xff1a; java Copy code import com.google.common.collect.Lists; List<String> list1 Lists.newArrayList("apple", "banana…...

从图片或PDF文件识别表格提取内容的简单库img2table

img2table是一个基于OpenCV 图像处理的用于 PDF 和图像的表识别和提取 Python库。由于其设计基于神经网络的解决方案&#xff0c;提供了一种实用且更轻便的替代方案&#xff0c;尤其是在 CPU 上使用时。 该库的特点&#xff1a; 识别图像和PDF文件中的表格&#xff0c;包括在表…...

CSV文件中使用insert 函数在指定列循环插入不同数据

文章目录 一、系统、工具要求二、需求三、代码实现&#xff1a;四、核心代码解读五、逐行更改某一列数据六&#xff1a;实现在文件的末尾增加指定内容列 一、系统、工具要求 pandaspythoncsv Windows 系统 二、需求 我有两个文件&#xff1a; 文件一&#xff1a;subject_ma…...

【华为OD题库-064】最小传输时延I-java

题目 某通信网络中有N个网络结点&#xff0c;用1到N进行标识。网络通过一个有向无环图.表示,其中图的边的值表示结点之间的消息传递时延。 现给定相连节点之间的时延列表times[]{u&#xff0c;v&#xff0c; w)&#xff0c;其中u表示源结点&#xff0c;v表示目的结点&#xff0…...

全文检索[ES系列] - 第495篇

历史文章&#xff08;文章累计490&#xff09; 《国内最全的Spring Boot系列之一》 《国内最全的Spring Boot系列之二》 《国内最全的Spring Boot系列之三》 《国内最全的Spring Boot系列之四》 《国内最全的Spring Boot系列之五》 《国内最全的Spring Boot系列之六》 M…...

【预计IEEE出版|EI征稿通知】第六届下一代数据驱动网络国际学术会议 (NGDN 2024)

第六届下一代数据驱动网络国际学术会议 (NGDN 2024) The Sixth International Conference on Next Generation Data-driven Networks 2024年4月26-28日 | 中国沈阳 基于前几届在英国埃克塞特 (ISPA 2020) 、中国沈阳 (TrustCom 2021) 和中国武汉 (IEEETrustCom-2022) 成功举…...

C++软件在Win平台运行总结

Windows平台&#xff1a; 1.需要安装运行库&#xff1a;无论是exe还是动态库用的哪种平台工具集(visual2010-visual2019)进行编译&#xff0c;需要安装对应的运行时库vc_redist.x64.exe/vc_redist.x86.exe。比如Exe用的是VisualStdio2010工具集编译&#xff0c;其中链接的一个…...

【数电笔记】16-卡诺图绘制(逻辑函数的卡诺图化简)

目录 说明&#xff1a; 最小项卡诺图的组成 1. 相邻最小项 2. 卡诺图的组成 2.1 二变量卡诺图 2.2 三表变量卡诺图 2.3 四变量卡诺图 3. 卡诺图中的相邻项&#xff08;几何相邻&#xff09; 说明&#xff1a; 笔记配套视频来源&#xff1a;B站&#xff1b;本系列笔记并…...

前端面试灵魂提问(1)

1.自我介绍 2.在实习中&#xff0c;你负责那一模块 3.any与unknow的异同 相同点&#xff1a;any和unkonwn 可以接受任何值 不同点&#xff1a;any会丢掉类型限制&#xff0c;可以用any 类型的变量随意做任何事情。unknown 变量会强制执行类型检查&#xff0c;所以在使用一个…...

Linux中项目部署步骤

安装jdk&#xff0c;tomcat 安装步骤 1&#xff0c;将压缩包&#xff0c;拷贝到虚拟机中。 通过工具&#xff0c;将文件直接拖到虚拟机的/home下 2&#xff0c;回到虚拟机中&#xff0c;查看/home下&#xff0c;有两个压缩文件 3&#xff0c;给压缩文件做解压缩操作 tar -z…...

cmd下查看python命令的用法

在cmd下&#xff0c;可以运行python --help或者py --help来查看python命令的用法。例如&#xff1a;...

大型语言模型在实体关系提取中的应用探索(二)

上一篇文章我们探讨了如何使用大语言模型进行实体关系的抽取。本篇文章我们将进一步探索这个话题。比较一下国内外几款知名大模型在相同的实体关系提取任务下的表现。由于精力有限&#xff0c;我们无法全面测试各模型的实体关系抽取能力&#xff0c;因此&#xff0c;看到的效果…...

Easy Excel设置表格样式

1. 设置通用样式 import com.alibaba.excel.annotation.ExcelProperty; import com.alibaba.excel.annotation.write.style.*; import com.fasterxml.jackson.annotation.JsonFormat; import com.xxx.npi.config.easypoi.EasyExcelDateConverter; import lombok.Data; import …...

HarmonyOS/OpenHarmony应用开发

OpenHarmony是由开放原子开源基金会(OpenAtom Foundation)孵化及运营的开源项目, 目标是面向全场景、全连接、全智能时代, 搭建一个智能终端设备操作系统的框架和平台, 促进万物互联产业的繁荣发展。 了解OpenHarmony HarmonyOS是华为通过OpenHarmony项目&#xff0c;结合商业…...

孩子都能学会的FPGA:第二十一课——用线性反馈移位寄存器实现伪随机序列

&#xff08;原创声明&#xff1a;该文是作者的原创&#xff0c;面向对象是FPGA入门者&#xff0c;后续会有进阶的高级教程。宗旨是让每个想做FPGA的人轻松入门&#xff0c;作者不光让大家知其然&#xff0c;还要让大家知其所以然&#xff01;每个工程作者都搭建了全自动化的仿…...

国内 AI 成图第一案!你来你会怎么判?

我国目前并未出台专门针对网络爬虫技术的法律规范&#xff0c;但在司法实践中&#xff0c;相关判决已屡见不鲜&#xff0c;K 哥特设了“K哥爬虫普法”专栏&#xff0c;本栏目通过对真实案例的分析&#xff0c;旨在提高广大爬虫工程师的法律意识&#xff0c;知晓如何合法合规利用…...

快速登录界面关于如何登录以及多账号列表解析以及config配置文件是如何读取(1)

快速登录界面关于如何登录以及多账号列表解析以及config配置文件是如何读取 1、快速登录界面关于如何登录以及快速登录界面账号如何显示 如图所示:根据按下按钮一键登录中途会发生什么。 关于一键登录按钮皮肤skin的设置: <Button name"QuickLoginOkBtn" text&q…...

finebi 新手入门案例

finebi 新手入门案例 连锁超市销售数据分析 步骤&#xff1a; 准备公共数据新建分析主题处理数据在数据中分析在图形中分析数据大屏 准备公共数据 点击公共数据 点击新建文件夹 修改文件夹名称 上传数据 鼠标悬停在文件夹上&#xff0c;右侧出现 鼠标悬停在文件夹上&#x…...

1. 小游戏(贪心)

题干&#xff1a; 谷同学很喜欢玩计算机游戏&#xff0c;特别是战略游戏&#xff0c;但是有时他不能尽快找到解所以常常感到很沮丧。现在面临如下问题&#xff1a;他必须在一个中世纪的城堡里设防&#xff0c;城堡里的道路形成一棵无向树。要在结点上安排最少的士兵使得他们可以…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟

2025年4月29日&#xff0c;在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上&#xff0c;可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞&#xff0c;强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...

【WebSocket】SpringBoot项目中使用WebSocket

1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖&#xff0c;添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...