当前位置: 首页 > news >正文

【数据结构(七)】查找算法

文章目录

  • 查找算法介绍
  • 1. 线性查找算法
  • 2. 二分查找算法
    • 2.1. 思路分析
    • 2.2. 代码实现
    • 2.3. 功能拓展
  • 3. 插值查找算法
    • 3.1. 前言
    • 3.2. 相关概念
    • 3.3. 实例应用
  • 4. 斐波那契(黄金分割法)查找算法
    • 4.1. 斐波那契(黄金分割法)原理
    • 4.2. 实例应用


查找算法介绍

在 java 中,我们常用的查找有四种:
    ① 顺序(线性)查找
    ② 二分查找/折半查找
    ③ 插值查找
    ④ 斐波那契查找

1. 线性查找算法

问题:
    数组arr[] = {1, 9, 11, -1, 34, 89},使用线性查找方式,找出11所在的位置。

代码实现:

package search;public class SeqSearch {public static void main(String[] args) {int arr[] = { 1, 9, 11, -1, 34, 89 };// 没有顺序的数组int index = seqSearch(arr, 11);if (index == -1) {System.out.println("没有找到");} else {System.out.println("找到了,下标为:" + index);}}/*** 这里实现的线性查找是找到一个满足条件的值,就返回* * @param arr* @param value* @return*/public static int seqSearch(int[] arr, int value) {// 线性查找是逐一比对,发现有相同的值,就返回下标for (int i = 0; i < arr.length; i++) {if (arr[i] == value) {return i;}}return -1;}}

运行结果:

在这里插入图片描述

2. 二分查找算法

问题:
    请对一个有序数组进行二分查找 {1,8, 10, 89, 1000, 1234} ,输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"。

2.1. 思路分析

二分查找的思路分析

  1. 首先,确定该数组的中间的下标: m i d = ( l e f t + r i g h t ) / 2 mid = (left + right) / 2 mid=(left+right)/2

  2. 然后让需要查找的数 findValarr[mid] 比较
    2.1. findVal > arr[mid],说明你要查找的数在mid 的右边, 因此需要递归的向右查找
    2.2. findVal < arr[mid],说明你要查找的数在mid 的左边, 因此需要递归的向左查找
    2.3. findVal == arr[mid],说明找到,就返回

  3. 什么时候需要结束递归:
    ①找到就结束递归
    ②递归完整个数组,仍然没有找到findVal,也需要结束递归 当 left > right 就需要退出

2.2. 代码实现

注意:使用二分查找的前提是 该数组是有序的

package search;public class BinarySearch {public static void main(String[] args) {int arr[] = { 1, 8, 10, 89, 1000, 1234 };int resIndex = binarySearch(arr, 0, arr.length - 1, 1);System.out.println("resIndex= " + resIndex);}// 二分查找法/*** * @param arr     数组* @param left    左边的索引* @param right   右边的索引* @param findVal 要查找的值* @return 如果找到就返回下标,如果没有找到就返回-1*/public static int binarySearch(int[] arr, int left, int right, int findVal) {// 当left > right 时,说明递归整个数组,但是没有找到if (left > right) {return -1;}int mid = (left + right) / 2;int midVal = arr[mid];if (findVal > midVal) {// 向右递归return binarySearch(arr, mid + 1, right, findVal);} else if (findVal < midVal) {return binarySearch(arr, left, mid - 1, findVal);} else {return mid;}}}

运行结果:

在这里插入图片描述

2.3. 功能拓展

问题:
    数组{1,8, 10, 89, 1000, 1000,1234}, 当一个有序数组中,有多个相同的数值时,如何将所有的数值都查找到,比如这里的 1000。

代码实现:

package search;import java.util.ArrayList;
import java.util.List;public class BinarySearch {public static void main(String[] args) {int arr[] = { 1, 8, 10, 89, 1000, 1000, 1234 };List<Integer> resIndexList = binarySearch2(arr, 0, arr.length - 1, 1000);System.out.println("resIndexList = " + resIndexList);}/** 思路分析:* 1. 在找 mid 的索引值,不要马上返回* 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList* 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList* 4. 将 ArrayList 返回*/public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {// 当left > right 时,说明递归整个数组,但是没有找到if (left > right) {return new ArrayList<Integer>();}int mid = (left + right) / 2;int midVal = arr[mid];if (findVal > midVal) {// 向右递归return binarySearch2(arr, mid + 1, right, findVal);} else if (findVal < midVal) {return binarySearch2(arr, left, mid - 1, findVal);} else {/** 思路分析:* 1. 在找 mid 的索引值,不要马上返回* 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList* 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList* 4. 将 ArrayList 返回*/List<Integer> resIndexlist = new ArrayList<Integer>();// 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayListint temp = mid - 1;while (true) {if (temp < 0 || arr[temp] != findVal) {// 退出break;}// 否则,就将temp放入到resIndexlistresIndexlist.add(temp);temp -= 1;// temp左移}resIndexlist.add(mid);// 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayListtemp = mid + 1;while (true) {if (temp > arr.length - 1 || arr[temp] != findVal) {// 退出break;}// 否则,就将temp放入到resIndexlistresIndexlist.add(temp);temp += 1;// temp左移}return resIndexlist;}}}

运行结果:

在这里插入图片描述

3. 插值查找算法

3.1. 前言

二分查找算法存在查找效率较慢的情况,因为其中的mid是从中间开始取的。假如对数组{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }进行查找,查找 1 所在的位置,实现代码如下:

package search;import java.util.ArrayList;
import java.util.List;public class BinarySearch {public static void main(String[] args) {int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 };List<Integer> resIndexList = binarySearch2(arr, 0, arr.length - 1, 1);System.out.println("resIndexList = " + resIndexList);}/** 思路分析:* 1. 在找 mid 的索引值,不要马上返回* 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList* 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList* 4. 将 ArrayList 返回*/public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {System.out.println("调用了一次");// 当left > right 时,说明递归整个数组,但是没有找到if (left > right) {return new ArrayList<Integer>();}int mid = (left + right) / 2;int midVal = arr[mid];if (findVal > midVal) {// 向右递归return binarySearch2(arr, mid + 1, right, findVal);} else if (findVal < midVal) {return binarySearch2(arr, left, mid - 1, findVal);} else {/** 思路分析:* 1. 在找 mid 的索引值,不要马上返回* 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList* 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList* 4. 将 ArrayList 返回*/List<Integer> resIndexlist = new ArrayList<Integer>();// 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayListint temp = mid - 1;while (true) {if (temp < 0 || arr[temp] != findVal) {// 退出break;}// 否则,就将temp放入到resIndexlistresIndexlist.add(temp);temp -= 1;// temp左移}resIndexlist.add(mid);// 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayListtemp = mid + 1;while (true) {if (temp > arr.length - 1 || arr[temp] != findVal) {// 退出break;}// 否则,就将temp放入到resIndexlistresIndexlist.add(temp);temp += 1;// temp左移}return resIndexlist;}}}

运行结果:

在这里插入图片描述

总共调用了4次才查找出1的索引值,效率较慢。通过插值查找可改善上述问题。

3.2. 相关概念

原理介绍:
    插值查找算法类似于二分查找,不同的是插值查找每次从自适应 mid 处开始查找。

mid的计算公式:
    对二分查找中的求 mid 索引的公式进行修改:
在这里插入图片描述

上图公式中:
① low 表示左边索引 left
② high 表示右边索引 right
③ key 就是前面二分查找中讲的 findVal(要查找的值)

即插值查找的 mid计算公式
m i d = l o w + ( h i g h − l o w ) k e y − a r r [ l o w ] a r r [ h i g h ] − a r r [ l o w ] \begin{aligned} &mid = low + (high-low)\frac{key-arr[low]}{arr[high]-arr[low]} \end{aligned} mid=low+(highlow)arr[high]arr[low]keyarr[low]
对应前面的代码公式,即:
m i d = l e f t + ( r i g h t – l e f t ) f i n d V a l – a r r [ l e f t ] a r r [ r i g h t ] – a r r [ l e f t ] \begin{aligned} &mid = left + (right – left)\frac{findVal – arr[left]}{arr[right] – arr[left]} \end{aligned} mid=left+(rightleft)arr[right]arr[left]findValarr[left]

举例说明:
    
    数组 arr = [1, 2, 3, …, 100]
    
①假如需要查找的值是 1
    (使用二分查找的话,需要多次递归,才能找到 1 的下标0)
    使用插值查找算法:
m i d = l e f t + ( r i g h t – l e f t ) f i n d V a l – a r r [ l e f t ] a r r [ r i g h t ] – a r r [ l e f t ] \begin{aligned}&mid = left + (right – left)\frac{findVal – arr[left]}{arr[right] – arr[left]}\end{aligned} mid=left+(rightleft)arr[right]arr[left]findValarr[left]
即:
m i d = 0 + ( 99 − 0 ) 1 − 1 100 − 1 = 0 + 99 ∗ 0 99 = 0 ( 直接定位到下标 0 ) \begin{aligned}&mid = 0+(99-0)\frac{1-1}{100-1} = 0 + 99 * \frac{0}{99} = 0\ \ \ (直接定位到下标0)\end{aligned} mid=0+(990)100111=0+99990=0   (直接定位到下标0)
②假如需要查找的值是 100
m i d = 0 + ( 99 − 0 ) 100 − 1 ( 100 − 1 = 0 + 99 ∗ 99 99 = 0 + 99 = 99 ( 直接定位到下标 99 ) \begin{aligned}&mid =0 + (99 - 0)\frac{100 - 1}{(100 - 1} = 0 + 99 * \frac{99}{99} = 0 + 99 = 99\ \ \ (直接定位到下标99)\end{aligned} mid=0+(990)(10011001=0+999999=0+99=99   (直接定位到下标99)

3.3. 实例应用

问题:
    对数组 arr = [1, 2, 3, …, 100] ,使用插值查找算法,找到 1 的索引值(下标)

代码实现:

package search;import java.util.Arrays;public class InsertValueSearch {public static void main(String[] args) {int[] arr = new int[100];for (int i = 0; i < 100; i++) {arr[i] = i + 1;}int index = insertValueSearch(arr, 0, arr.length - 1, 1);System.out.println("index = " + index);// System.out.println(Arrays.toString(arr));}// 编写插值查找算法// 说明:插值查找算法也要求数组是有序的/*** * @param arr     数组* @param left    左边索引* @param right   右边索引* @param findVal 要查找的值* @return 如果找到,就返回对应的下标;如果没有找到,就返回-1*/public static int insertValueSearch(int[] arr, int left, int right, int findVal) {System.out.println("查找了一次");// 注意:findVal < arr[0] 和 findVal > arr[arr.length - 1] 必须需要,否则得到的mid可能越界if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {return -1;}// 求出 midint mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);int midVal = arr[mid];if (findVal > midVal) {// 说明应该向右边递归return insertValueSearch(arr, mid + 1, right, findVal);} else if (findVal < midVal) {// 说明应该向左递归return insertValueSearch(arr, left, mid - 1, findVal);} else {return mid;}}}

运行结果:

在这里插入图片描述

注意事项:

  1. 对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找, 速度较快.
  2. 关键字分布不均匀的情况下,该方法不一定比折半(二分)查找要好

4. 斐波那契(黄金分割法)查找算法

    
    黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是 0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意想不到的效果。

    斐波那契数列 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … … } 发现斐波那契数列的两个相邻数 的比例,无限接近 黄金分割值0.618。

4.1. 斐波那契(黄金分割法)原理

    斐波那契查找原理与前两种相似,仅仅改变了中间结点(mid)的位置,mid 不再是中间或插值得到,而是位于黄金分割点附近,即 m i d = l o w + F [ k − 1 ] − 1 mid=low+F[k-1]-1 mid=low+F[k1]1 F F F 代表斐波那契数列),如下图所示:

在这里插入图片描述

对 F(k-1)-1 的理解:

  1. 由斐波那契数列 F [ k ] = F [ k − 1 ] + F [ k − 2 ] F[k]=F[k-1]+F[k-2] F[k]=F[k1]+F[k2] 的性质,可以得到 ( F [ k ] − 1 ) = ( F [ k − 1 ] − 1 ) + ( F [ k − 2 ] − 1 ) + 1 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 (F[k]1)=(F[k1]1)+(F[k2]1)+1 。该式说明:只要顺序表的长度为 F[k]-1,则可以将该表分成长度为 F [ k − 1 ] − 1 F[k-1]-1 F[k1]1 F [ k − 2 ] − 1 F[k-2]-1 F[k2]1 的两段,即如上图所示。从而中间位置为 m i d = l o w + F [ k − 1 ] − 1 mid=low+F[k-1]-1 mid=low+F[k1]1
  2. 类似的,每一子段也可以用相同的方式分割
  3. 但顺序表长度 n n n 不一定刚好等于 F [ k ] − 1 F[k]-1 F[k]1,所以需要将原来的顺序表长度 n n n 增加至 F [ k ] − 1 F[k]-1 F[k]1。这里的 k k k 值只要能使得 F [ k ] − 1 F[k]-1 F[k]1 恰好大于或等于 n n n 即可,由以下代码得到,顺序表长度增加后,新增的位置(从 n + 1 n+1 n+1 F [ k ] − 1 F[k]-1 F[k]1 位置),都赋为 n n n 位置的值即可。

while(n>fib(k)-1)
  k++;

4.2. 实例应用

问题:
    请对一个有序数组进行斐波那契查找 {1,8, 10, 89, 1000, 1234} ,输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"(return = -1)。

代码实现:

package search;import java.util.Arrays;public class FibonacciSearch {public static int maxSize = 20;public static void main(String[] args) {int[] arr = { 1, 8, 10, 89, 1000, 1234 };System.out.println("index = " + fibSearch(arr, 89));}// 因为后面我们mid=low+F(k-1)-1,需要使用斐波那契数列,因此我们需要先获取到一个斐波那契数列// 非递归方法得到一个斐波那契数列public static int[] fib() {int[] f = new int[maxSize];f[0] = 1;f[1] = 1;for (int i = 2; i < maxSize; i++) {f[i] = f[i - 1] + f[i - 2];}return f;}// 编写斐波那契查找算法// 使用非递归的方式编写算法/*** * @param a   数组* @param key 需要查找的关键字(值)* @return 返回对应的下标,如果没有,就返回-1*/public static int fibSearch(int[] a, int key) {int low = 0;int high = a.length - 1;int k = 0;// 表示斐波那契分割数值的下标int mid = 0;// 存放mid值int f[] = fib();// 获取到斐波那契数列// 获取到斐波那契分割数值的下标while (high > f[k] - 1) {k++;}// 因为f[k]的值 可能大于a的长度,因此需要使用Arrays类,构造一个新的数组,并指向a[]// 不足的部分会使用0填充int[] temp = Arrays.copyOf(a, f[k]);// 实际上,需要使用a数组的最后的数填充temp// 举例:// temp = {1,8,10,89,1000,1234,0,0,0} --> {1,8,10,89,1000,1234,1234,1234,1234}for (int i = high + 1; i < temp.length; i++) {temp[i] = a[high];}// 使用while循环处理,找到keywhile (low <= high) {// 只要这个条件满足,就可以找mid = low + f[k - 1] - 1;if (key < temp[mid]) {// 继续向数组的前面查找(左边)high = mid - 1;// 为什么是k--?// 说明:// 1. 全部元素=前面的元素+后面的元素// 2. f[k] = f[k-1] + f[k-2]// 因为 前面有f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]// 即 在f[k-1]的前面继续查找(k--)// 即 下次循环的 mid = f[k-1-1]-1k--;} else if (key > temp[mid]) {// 继续向数组的后面查找(右边)low = mid + 1;// 为什么是 k -= 2// 说明// 1. 全部元素=前面的元素+后面的元素// 2. f[k] = f[k-1] + f[k-2]// 因为 后面有f[k-2]个元素,所以可以继续拆分 f[k-2] = f[k-3] + f[k-4]// 即 在f[k-2]的后面继续查找(k-=2)// 即 下次循环的 mid = f[k-1-2]-1k -= 2;} else {// 找到// 需要确定,返回的是哪一个下标if (mid <= high) {return mid;} else {return high;}}}return -1;}}

运行结果:

在这里插入图片描述

相关文章:

【数据结构(七)】查找算法

文章目录 查找算法介绍1. 线性查找算法2. 二分查找算法2.1. 思路分析2.2. 代码实现2.3. 功能拓展 3. 插值查找算法3.1. 前言3.2. 相关概念3.3. 实例应用 4. 斐波那契(黄金分割法)查找算法4.1. 斐波那契(黄金分割法)原理4.2. 实例应用 查找算法介绍 在 java 中&#xff0c;我们…...

Android画布Canvas绘制drawBitmap基于源Rect和目的Rect,Kotlin

Android画布Canvas绘制drawBitmap基于源Rect和目的Rect&#xff0c;Kotlin <?xml version"1.0" encoding"utf-8"?> <androidx.appcompat.widget.LinearLayoutCompat xmlns:android"http://schemas.android.com/apk/res/android"xmlns…...

深度优先搜索LeetCode979. 在二叉树中分配硬币

给你一个有 n 个结点的二叉树的根结点 root &#xff0c;其中树中每个结点 node 都对应有 node.val 枚硬币。整棵树上一共有 n 枚硬币。 在一次移动中&#xff0c;我们可以选择两个相邻的结点&#xff0c;然后将一枚硬币从其中一个结点移动到另一个结点。移动可以是从父结点到…...

C++学习之路(十)C++ 用Qt5实现一个工具箱(增加一个时间戳转换功能)- 示例代码拆分讲解

上篇文章&#xff0c;我们用 Qt5 实现了在小工具箱中添加了《JSON数据格式化》功能&#xff0c;还是比较实用的。为了继续丰富我们的工具箱&#xff0c;今天我们就再增加一个平时经常用到的功能吧&#xff0c;就是「 时间戳转换 」功能&#xff0c;而且实现点击按钮后文字进行变…...

Linux 5.15安全特性之ARM64 PAC

ARM64 PAC&#xff08;Pointer Authentication Code&#xff09;机制是ARM架构中引入的一种安全特性&#xff0c;旨在提供指针的完整性和安全性保护。它通过在指针中插入一段额外的代码进行签名&#xff0c;以验证指针的完整性&#xff0c;从而抵御缓冲区溢出和代码注入等攻击。…...

同旺科技 分布式数字温度传感器

内附链接 1、数字温度传感器 主要特性有&#xff1a; ● 支持PT100 / PT1000 两种铂电阻&#xff1b; ● 支持 2线 / 3线 / 4线 制接线方式&#xff1b; ● 支持5V&#xff5e;17V DC电源供电&#xff1b; ● 支持电源反接保护&#xff1b; ● 支持通讯波特率1200bps、2…...

状态空间的定义

状态空间是描述一个系统所有可能状态的集合。在系统理论、控制论、计算机科学、强化学习等领域&#xff0c;状态空间是一种常见的概念。 状态空间框架是一种用于描述和分析系统的方法&#xff0c;它包括系统的状态、状态之间的转移关系以及与状态相关的行为。下面详细解释状态…...

数据挖掘实战-基于word2vec的短文本情感分析

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...

大数据面试总结

1、冒泡排序、选择排序 2、二分查找 3、 hashmap和hashtable的区别&#xff1f;hashmap的底层实现原理&#xff1f; a、hashtable和hashmap的区别&#xff1a; 1、hashtable是线程安全的&#xff0c;会在每一个方法中都添加方法synchronize&#xff08;同步机制&#xff09…...

利大于弊:物联网技术对电子商务渠道的影响

For Better or For Worse: Impacts of IoT Technology in e-Commerce Channel 物联网技术使用传感器和其他联网设备来手机和共享数据&#xff0c;并且被视为一种可以为供应链成员带来巨大的机会的突破性技术。本文的研究背景是&#xff1a;一个提供物联网基础设备的电子商务平…...

Python 元组详解(tuple)

文章目录 1 概述1.1 性质1.2 下标1.3 切片 2 常用方法2.1 访问&#xff1a;迭代、根据下标2.2 删除&#xff1a;del2.3 运算符&#xff1a;、*2.4 计算元组中元素个数&#xff1a;len()2.5 返回元组中元素最大值&#xff1a;max()2.6 返回元组中元素最小值&#xff1a;min()2.7…...

Redis部署-主从模式

目录 单点问题 主从模式 解析主从模式 配置redis主从模式 info replication命令查看复制相关的状态 断开复制关系 安全性 只读 传输延迟 拓扑结构 数据同步psync replicationid offset psync运行流程 全量复制流程 无硬盘模式 部分复制流程 积压缓冲区 实时复…...

全栈冲刺 之 一天速成MySQL

一、为什么使用数据库 数据储存在哪里&#xff1f; 硬盘、网盘、U盘、光盘、内存&#xff08;临时存储&#xff09; 数据持久化 使用文件来进行存储&#xff0c;数据库也是一种文件&#xff0c;像excel &#xff0c;xml 这些都可以进行数据的存储&#xff0c;但大量数据操作…...

服务器运行train.py报错解决

在服务器配置完虚拟环境以及安装完各种所需库后&#xff0c;发现报错Traceback (most recent call last): File "/root/yolov5-master/yolov5-master/train.py", line 48, in <module> import val as validate # for end-of-epoch mAP File "/root/yolov5…...

Flutter开发type ‘Future<int>‘ is not a subtype of type ‘int‘ in type cast错误

文章目录 问题描述错误源码 问题分析解决方法修改后的代码 问题描述 今天有个同事调试flutter程序时报错&#xff0c;问我怎么解决&#xff0c;程序运行时报如下错误&#xff1a; type ‘Future’ is not a subtype of type ‘int’ in type cast 错误源码 int order Databas…...

Nginx(十二) gzip gzip_static sendfile directio aio 组合使用测试(2)

测试10&#xff1a;开启gzip、sendfile、aio、directio1m&#xff0c;关闭gzip_static&#xff0c;请求/index.js {"time_iso8601":"2023-11-30T17:20:5508:00","request_uri":"/index.js","status":"200","…...

hls实现播放m3u8视频将视频流进行切片 HLS.js简介

github官网GitHub - video-dev/hls.js: HLS.js is a JavaScript library that plays HLS in browsers with support for MSE.HLS.js is a JavaScript library that plays HLS in browsers with support for MSE. - GitHub - video-dev/hls.js: HLS.js is a JavaScript library …...

Ubuntu20.04部署TVM流程及编译优化模型示例

前言&#xff1a;记录自己安装TVM的流程&#xff0c;以及一个简单的利用TVM编译模型并执行的示例。 1&#xff0c;官网下载TVM源码 git clone --recursive https://github.com/apache/tvmgit submodule init git submodule update顺便完成准备工作&#xff0c;比如升级cmake版本…...

华为OD机试真题-两个字符串间的最短路径问题-2023年OD统一考试(C卷)

题目描述: 给定两个字符串,分别为字符串A与字符串B。例如A字符串为ABCABBA,B字符串为CBABAC可以得到下图m*n的二维数组,定义原点为(0, 0),终点为(m, n),水平与垂直的每一条边距离为1,映射成坐标系如下图。 从原点(0, 0)到(0, A)为水平边,距离为1,从(0, A)到(A, C)为垂…...

python try-except

相比于直接raise ValueError&#xff0c;使用try-except可以使程序在发生异常后仍然能够运行。 在try的部分中&#xff0c;当遇到第一个Error&#xff0c;就跳转到except中寻找对应类型的error&#xff0c;后续代码不再执行&#xff0c;如果try中有多个Error&#xff0c;注意顺…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

【51单片机】4. 模块化编程与LCD1602Debug

1. 什么是模块化编程 传统编程会将所有函数放在main.c中&#xff0c;如果使用的模块多&#xff0c;一个文件内会有很多代码&#xff0c;不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里&#xff0c;在.h文件里提供外部可调用函数声明&#xff0c;其他.c文…...

STL 2迭代器

文章目录 1.迭代器2.输入迭代器3.输出迭代器1.插入迭代器 4.前向迭代器5.双向迭代器6.随机访问迭代器7.不同容器返回的迭代器类型1.输入 / 输出迭代器2.前向迭代器3.双向迭代器4.随机访问迭代器5.特殊迭代器适配器6.为什么 unordered_set 只提供前向迭代器&#xff1f; 1.迭代器…...