阅读笔记|A Survey of Large Language Models
阅读笔记
模型选择:是否一定要选择参数量巨大的模型?如果需要更好的泛化能力,用于处理非单一的任务,例如对话,则可用选更大的模型;而对于单一明确的任务,则不一定越大越好,参数小一些的模型也能调教得很好。
接口交互:大语言模型可以使用网络请求接口获取其本身在预训练中没有的额外信息。
多模态:大语言模型展现出良好的多模态理解能力,特别是对于图片数据的处理能力。因此其对于一个网络中拓扑结构、流量矩阵等数据也是存在了可以理解和处理的可能的。
语言如何输入:自然语言首先需要被tokenize,从而将其用数字进行表示,使其可以正式输入模型。在输入模型后,还会进行词嵌入表示(或者是词的分布式表示),也就是进一步用多维向量表示一个词。词嵌入并非Transformer首创,此前的工作中已经在广泛使用词嵌入方法了,大名鼎鼎的Word2Vec就是其中一种。
“预训练和微调”学习范式:预训练是从CV兴起而后借鉴到NLP的一种训练方法,通常是无监督的。对于PLM,通常使用大量语料进行预训练,其过程无需人工标记,而是利用已有的词句信息对某一词进行预测。微调是指在PLM的基础上,进一步根据下游子任务的要求,对PLM进行更具针对性的有监督训练(包括对齐)并更新参数,使其适应子任务。微调主要分为指令微调和对齐微调。对于一些领域的子任务,PLM甚至无需微调也能依靠自身的上下文学习能力达到不错的效果。
与人类对齐:由于预训练数据不可避免参杂与主流价值观不符的内容,模型需要与人类价值观或偏好进行对齐,以减少危害并增加性能。相关工作利用带人类反馈的强化学习(RLHF)进行微调对齐。
扩展与扩展法则:语言模型在模型规模、数据规模和总计算量上的扩展,一般会使模型具备更好的特性与理解输出能力,并更可能涌现能力(包括上下文学习、指令遵循、逐步推理等)。LLMs由于规模扩展而产生的影响的现象成为扩展效应,有相关研究定量描述了LLMs的扩展法则。
代码数据训练提高CoT提示能力:Codex是在PLM基础上使用大量Github代码微调的GPT模型,可以解决困难的编程问题并在数学问题上有显著性能提升,猜测称代码训练可提高其思维链(CoT)提示能力。
LLMs资源:LLMs的预训练需要耗费大量资源(微调更新权重也很消耗),建议在已有开源资源基础上进行开发,包括开源模型和公共API(可微调),以及公开语料库,详细信息下面四张图总结得很好。




模型训练:预训练阶段的任务通常有语言建模和去噪自编码,语言建模任务针对不同模型结构(因果解码器casual decoder、前缀解码器prefix decoder等)有不同任务变体。此外,训练LLM时最为重要的便是设置和技巧。
-
训练中动态增大batch size以有效稳定LLM训练过程
-
动态学习率策略如初始采用线性增加预热策略,后续采用余弦衰减策略
-
使用权重衰减和梯度裁剪来稳定训练,避免模型崩溃。
-
采用数据并行、流水线并行、张量并行、ZeRO和混合精度训练等方法在有限资源情况下进行高效的并行化训练。
RLHF用于微调:在有监督微调结束后,可以应用基于人类反馈的强化学习来进行对齐微调,更好地学习人类偏好。其中较为关键的我认为有两方面,一方面是奖励模型,相关工作使用有标注数据有监督地训练一个奖励模型预测人类偏好;另一方面是将LLM的微调形式化为强化学习问题。
LLM使用:经过预训练或微调后,模型的使用也别有学问,OpenAI的报告中大量做了这方面的文章。较为著名的使用策略有上下文学习和思维链提示。
LLM评估:主流的评估方法是在公共NLP任务数据集上进行测试评估。而专用于网络配置或是其他类似子任务的公共数据集暂时没有看到。因此这方面的评估需要进一步的设计和探讨。
LLM主要问题:在语言生成方面,其可控生成和专业化生成能力仍然面临挑战,例如在一般类型数据集训练的LM用于涉及专业知识的医学报告时。在知识利用方面,LM存在幻觉和知识实时性问题。前者表示LM会捏造事实,后者表示LM难以处理需要更新鲜知识的任务。在复杂推理方面,LM存在不一致性和数值计算问题。前者表示LM的推理路径与结果并不一致,后者表示LM的数值计算能力仍然有待提高。
个人感想
- 此篇论文很好地揭示了LLM在结构、预训练、微调、评估等等诸多方面的细节。但由于技术日新月异,比较遗憾地是没有看到更新的关于多模态方面的介绍。
- LLM的训练与微调有资源门槛,但有公开的模型可通过API进行微调,这一点可以考虑加以利用。
相关文章:
阅读笔记|A Survey of Large Language Models
阅读笔记 模型选择:是否一定要选择参数量巨大的模型?如果需要更好的泛化能力,用于处理非单一的任务,例如对话,则可用选更大的模型;而对于单一明确的任务,则不一定越大越好,参数小一…...
JSP 设置静态文件资源访问路径
这里 我们先在 WEB目录webapp 下创建一个包 叫 static 就用它来存静态资源 然后 我们扔一张图片进去 我们直接这样写 如下图 找到父级目录 然后寻找下面的 static 下的 img.png 运行代码 很明显 它没有找到 这边 我们直接找到 webapp目录下的 WEB-INF目录下的 web.xml 加入…...
【Pytorch】Visualization of Feature Maps(4)——Saliency Maps
学习参考来自 Saliency Maps的原理与简单实现(使用Pytorch实现)https://github.com/wmn7/ML_Practice/tree/master/2019_07_08/Saliency%20Maps Saliency Maps 原理 《Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps》&…...
java第三十课
电商项目(前台): 登录接口 注册接口后台: 注册审核:建一个线程类 注意程序中的一个问题。 这里是 5 条记录,2 条记录显示应该是 3 页,实际操作过程 有审核机制,出现了数据记录动态变…...
Scala--2
package scala02object Scala07_typeCast {def main(args: Array[String]): Unit {// TODO 隐式转换// 自动转换val b: Byte 10var i: Int b 10val l: Long b 10 100Lval fl: Float b 10 100L 10.5fval d: Double b 10 100L 10.5f 20.00println(d.getClass…...
【SQL SERVER】定时任务
oracle是定时JOB,sqlserver是创建作业,通过sqlserver代理实现 先看SQL SERVER代理得服务有没有开 选择计算机右键——>管理——>服务与应用程序——>服务——>SQL server 代理 然后把SQL server 代理(MSSQLSERVER)启…...
MyBatis-Plus学习笔记(无脑cv即可)
1.MyBatis-Plus 1.1特性 无侵入:只做增强不做改变,引入它不会对现有工程产生影响,如丝般顺滑损耗小:启动即会自动注入基本 CURD,性能基本无损耗,直接面向对象操作强大的 CRUD 操作:内置通用 M…...
【VUE】watch 监听失效
如果你遇见了这个问题,那么尝试在 watch 函数中设置 { deep: true } 选项。这告诉 Vue 监听对象或数组内部的变化,就像下面这样: watch(()>chatStore.dataSources,(oldValue, newValue)>{// 监听执行逻辑 }, { deep: true })嗯&#x…...
python的异常处理批量执行网络设备的巡检命令
前言 在网络设备数量超过千台甚至上万台的大型企业网中,难免会遇到某些设备的管理IP地址不通,SSH连接失败的情况,设备数量越多,这种情况发生的概率越高。 这个时候如果你想用python批量配置所有的设备,就一定要注意这…...
react native 环境准备
一、必备安装 1、安装node 注意 Node 的版本应大于等于 16,安装完 Node 后建议设置 npm 镜像(淘宝源)以加速后面的过程(或使用科学上网工具)。 node下载地址:Download | Node.js设置淘宝源 npm config s…...
PGSQL(PostgreSQL)数据库安装教程
安装包下载 下载地址 下载后点击exe安装包 设置的data存储路径 设置密码 设置端口 安装完毕,配置PGSQL的ip远程连接,pg_hba.conf,postgresql.conf,需要更改这两个文件 pg_hba.conf 最后增加一行 host all all …...
识别和修复网站上损坏链接的最佳实践
如果您有一个网站,我们知道您花了很多时间在它上面,以使其成为最好的资源。如果你的链接不起作用,你的努力可能是徒劳的。您网站上的断开链接可能会以两种方式损害您的业务: 它们对企业来说是可怕的,因为当消费者点击…...
使用Navicat连接MySQL出现的一些错误
目录 一、错误一:防火墙未关闭 二、错误二:安全组问题 三、错误三:MySQL密码的加密方式 四、错误四:修改my.cnf配置文件 一、错误一:防火墙未关闭 #查看防火墙状态 firewall-cmd --state#关闭防…...
4G基站BBU、RRU、核心网设备
目录 前言 基站 核心网 信号传输 前言 移动运营商在建设4G基站的时候,除了建设一座铁塔之外,更重要的是建设搭载铁塔之上的移动通信设备,这篇博客主要介绍BBU,RRU以及机房的核心网等设备。 基站 一个基站有BBU,…...
iphone/安卓手机如何使用burp抓包
iphone 1. 电脑 ipconfig /all 获取电脑网卡ip: 192.168.31.10 2. 电脑burp上面打开设置,proxy,增加一条 192.168.31.10:8080 3. 4. 手机进入设置 -> Wi-Fi -> 找到HTTP代理选项,选择手动,192.168.31.10:8080 …...
springboot云HIS医院信息综合管理平台源码
满足基层医院机构各类业务需要的健康云HIS系统。该系统能帮助基层医院机构完成日常各类业务,提供病患挂号支持、病患问诊、电子病历、开药发药、会员管理、统计查询、医生站和护士站等一系列常规功能,能与公卫、PACS等各类外部系统融合,实现多…...
【视觉SLAM十四讲学习笔记】第三讲——四元数
专栏系列文章如下: 【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍 【视觉SLAM十四讲学习笔记】第二讲——初识SLAM 【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵 【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角 本章将介绍视觉SLAM的基本问题之一&#x…...
Linux系统之部署Plik临时文件上传系统
Linux系统之部署Plik临时文件上传系统 一、Plik介绍1.1 Plik简介1.2 Plik特点 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、检查本地环境3.1 检查本地操作系统版本3.2 检查系统内核版本 四、下载Plik软件包4.1 创建下载目录4.2 下载Plik软件包4.3 查看下载的Plik软件…...
【EI征稿中#先投稿,先送审#】第三届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2024)
第三届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2024) 2024 3rd International Conference on Cyber Security, Artificial Intelligence and Digital Economy 第二届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2023&…...
『亚马逊云科技产品测评』活动征文|基于亚马逊云EC2搭建OA系统
授权声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 Developer Centre, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道 亚马逊EC2云服务器(Elastic Compute Cloud)是亚马…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...
