HuggingFace学习笔记--BitFit高效微调
1--BitFit高效微调
BitFit,全称是 bias-term fine-tuning,其高效微调只去微调带有 bias 的参数,其余参数全部固定;
2--实例代码
from datasets import load_from_disk
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq
from transformers import pipeline, TrainingArguments, Trainer# 分词器
tokenizer = AutoTokenizer.from_pretrained("Langboat/bloom-1b4-zh")# 函数内将instruction和response拆开分词的原因是:
# 为了便于mask掉不需要计算损失的labels, 即代码labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]
def process_func(example):MAX_LENGTH = 256input_ids, attention_mask, labels = [], [], []instruction = tokenizer("\n".join(["Human: " + example["instruction"], example["input"]]).strip() + "\n\nAssistant: ")response = tokenizer(example["output"] + tokenizer.eos_token)input_ids = instruction["input_ids"] + response["input_ids"]attention_mask = instruction["attention_mask"] + response["attention_mask"]labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]if len(input_ids) > MAX_LENGTH:input_ids = input_ids[:MAX_LENGTH]attention_mask = attention_mask[:MAX_LENGTH]labels = labels[:MAX_LENGTH]return {"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels}if __name__ == "__main__":# 加载数据集dataset = load_from_disk("./PEFT/data/alpaca_data_zh")# 处理数据tokenized_ds = dataset.map(process_func, remove_columns = dataset.column_names)# print(tokenizer.decode(tokenized_ds[1]["input_ids"]))# print(tokenizer.decode(list(filter(lambda x: x != -100, tokenized_ds[1]["labels"]))))# 创建模型model = AutoModelForCausalLM.from_pretrained("Langboat/bloom-1b4-zh", low_cpu_mem_usage=True)# 基于bitfit只训练带有bias的参数for name, param in model.named_parameters():if "bias" not in name:param.requires_grad = False# 训练参数args = TrainingArguments(output_dir = "./chatbot",per_device_train_batch_size = 1,gradient_accumulation_steps = 8,logging_steps = 10,num_train_epochs = 1)# trainertrainer = Trainer(model = model,args = args,train_dataset = tokenized_ds,data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True))# 训练模型trainer.train()# 模型推理pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)ipt = "Human: {}\n{}".format("考试有哪些技巧?", "").strip() + "\n\nAssistant: "output = pipe(ipt, max_length=256, do_sample=True)print(output)
结果:
相关文章:

HuggingFace学习笔记--BitFit高效微调
1--BitFit高效微调 BitFit,全称是 bias-term fine-tuning,其高效微调只去微调带有 bias 的参数,其余参数全部固定; 2--实例代码 from datasets import load_from_disk from transformers import AutoTokenizer, AutoModelForCaus…...

阅读笔记|A Survey of Large Language Models
阅读笔记 模型选择:是否一定要选择参数量巨大的模型?如果需要更好的泛化能力,用于处理非单一的任务,例如对话,则可用选更大的模型;而对于单一明确的任务,则不一定越大越好,参数小一…...

JSP 设置静态文件资源访问路径
这里 我们先在 WEB目录webapp 下创建一个包 叫 static 就用它来存静态资源 然后 我们扔一张图片进去 我们直接这样写 如下图 找到父级目录 然后寻找下面的 static 下的 img.png 运行代码 很明显 它没有找到 这边 我们直接找到 webapp目录下的 WEB-INF目录下的 web.xml 加入…...

【Pytorch】Visualization of Feature Maps(4)——Saliency Maps
学习参考来自 Saliency Maps的原理与简单实现(使用Pytorch实现)https://github.com/wmn7/ML_Practice/tree/master/2019_07_08/Saliency%20Maps Saliency Maps 原理 《Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps》&…...

java第三十课
电商项目(前台): 登录接口 注册接口后台: 注册审核:建一个线程类 注意程序中的一个问题。 这里是 5 条记录,2 条记录显示应该是 3 页,实际操作过程 有审核机制,出现了数据记录动态变…...
Scala--2
package scala02object Scala07_typeCast {def main(args: Array[String]): Unit {// TODO 隐式转换// 自动转换val b: Byte 10var i: Int b 10val l: Long b 10 100Lval fl: Float b 10 100L 10.5fval d: Double b 10 100L 10.5f 20.00println(d.getClass…...

【SQL SERVER】定时任务
oracle是定时JOB,sqlserver是创建作业,通过sqlserver代理实现 先看SQL SERVER代理得服务有没有开 选择计算机右键——>管理——>服务与应用程序——>服务——>SQL server 代理 然后把SQL server 代理(MSSQLSERVER)启…...

MyBatis-Plus学习笔记(无脑cv即可)
1.MyBatis-Plus 1.1特性 无侵入:只做增强不做改变,引入它不会对现有工程产生影响,如丝般顺滑损耗小:启动即会自动注入基本 CURD,性能基本无损耗,直接面向对象操作强大的 CRUD 操作:内置通用 M…...
【VUE】watch 监听失效
如果你遇见了这个问题,那么尝试在 watch 函数中设置 { deep: true } 选项。这告诉 Vue 监听对象或数组内部的变化,就像下面这样: watch(()>chatStore.dataSources,(oldValue, newValue)>{// 监听执行逻辑 }, { deep: true })嗯&#x…...

python的异常处理批量执行网络设备的巡检命令
前言 在网络设备数量超过千台甚至上万台的大型企业网中,难免会遇到某些设备的管理IP地址不通,SSH连接失败的情况,设备数量越多,这种情况发生的概率越高。 这个时候如果你想用python批量配置所有的设备,就一定要注意这…...

react native 环境准备
一、必备安装 1、安装node 注意 Node 的版本应大于等于 16,安装完 Node 后建议设置 npm 镜像(淘宝源)以加速后面的过程(或使用科学上网工具)。 node下载地址:Download | Node.js设置淘宝源 npm config s…...

PGSQL(PostgreSQL)数据库安装教程
安装包下载 下载地址 下载后点击exe安装包 设置的data存储路径 设置密码 设置端口 安装完毕,配置PGSQL的ip远程连接,pg_hba.conf,postgresql.conf,需要更改这两个文件 pg_hba.conf 最后增加一行 host all all …...

识别和修复网站上损坏链接的最佳实践
如果您有一个网站,我们知道您花了很多时间在它上面,以使其成为最好的资源。如果你的链接不起作用,你的努力可能是徒劳的。您网站上的断开链接可能会以两种方式损害您的业务: 它们对企业来说是可怕的,因为当消费者点击…...

使用Navicat连接MySQL出现的一些错误
目录 一、错误一:防火墙未关闭 二、错误二:安全组问题 三、错误三:MySQL密码的加密方式 四、错误四:修改my.cnf配置文件 一、错误一:防火墙未关闭 #查看防火墙状态 firewall-cmd --state#关闭防…...

4G基站BBU、RRU、核心网设备
目录 前言 基站 核心网 信号传输 前言 移动运营商在建设4G基站的时候,除了建设一座铁塔之外,更重要的是建设搭载铁塔之上的移动通信设备,这篇博客主要介绍BBU,RRU以及机房的核心网等设备。 基站 一个基站有BBU,…...

iphone/安卓手机如何使用burp抓包
iphone 1. 电脑 ipconfig /all 获取电脑网卡ip: 192.168.31.10 2. 电脑burp上面打开设置,proxy,增加一条 192.168.31.10:8080 3. 4. 手机进入设置 -> Wi-Fi -> 找到HTTP代理选项,选择手动,192.168.31.10:8080 …...

springboot云HIS医院信息综合管理平台源码
满足基层医院机构各类业务需要的健康云HIS系统。该系统能帮助基层医院机构完成日常各类业务,提供病患挂号支持、病患问诊、电子病历、开药发药、会员管理、统计查询、医生站和护士站等一系列常规功能,能与公卫、PACS等各类外部系统融合,实现多…...

【视觉SLAM十四讲学习笔记】第三讲——四元数
专栏系列文章如下: 【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍 【视觉SLAM十四讲学习笔记】第二讲——初识SLAM 【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵 【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角 本章将介绍视觉SLAM的基本问题之一&#x…...

Linux系统之部署Plik临时文件上传系统
Linux系统之部署Plik临时文件上传系统 一、Plik介绍1.1 Plik简介1.2 Plik特点 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、检查本地环境3.1 检查本地操作系统版本3.2 检查系统内核版本 四、下载Plik软件包4.1 创建下载目录4.2 下载Plik软件包4.3 查看下载的Plik软件…...

【EI征稿中#先投稿,先送审#】第三届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2024)
第三届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2024) 2024 3rd International Conference on Cyber Security, Artificial Intelligence and Digital Economy 第二届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2023&…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...