当前位置: 首页 > news >正文

Python高级数据结构——并查集(Disjoint Set)

Python中的并查集(Disjoint Set):高级数据结构解析

并查集是一种用于处理集合的数据结构,它主要支持两种操作:合并两个集合和查找一个元素所属的集合。在本文中,我们将深入讲解Python中的并查集,包括并查集的基本概念、实现方式、路径压缩和应用场景,并使用代码示例演示并查集的操作。

基本概念

1. 并查集的表示

并查集通常使用树来表示集合,其中每个节点表示一个元素,树的根节点表示集合的代表元素。

class DisjointSet:def __init__(self, size):self.parent = [i for i in range(size)]self.rank = [0] * sizedef find(self, x):if self.parent[x] != x:self.parent[x] = self.find(self.parent[x])  # 路径压缩return self.parent[x]def union(self, x, y):root_x = self.find(x)root_y = self.find(y)if root_x != root_y:if self.rank[root_x] < self.rank[root_y]:self.parent[root_x] = root_yelif self.rank[root_x] > self.rank[root_y]:self.parent[root_y] = root_xelse:self.parent[root_x] = root_yself.rank[root_y] += 1# 示例
disjoint_set = DisjointSet(5)
disjoint_set.union(0, 1)
disjoint_set.union(1, 2)
disjoint_set.union(3, 4)
2. 路径压缩

路径压缩是通过在 find 操作中将节点直接连接到根节点来优化并查集的性能。它减小了树的高度,使得后续的 find 操作更快。

def find(self, x):if self.parent[x] != x:self.parent[x] = self.find(self.parent[x])  # 路径压缩return self.parent[x]

应用场景

并查集常用于解决集合的合并和查找问题,例如:

  1. 网络连接问题: 判断网络中的节点是否连通。
  2. 社交网络中的关系: 判断两个人是否属于同一个社交圈。
  3. 图的连通性问题: 判断图中的节点是否在同一个连通分量中。
代码示例:解决网络连接问题
def are_nodes_connected(disjoint_set, node1, node2):return disjoint_set.find(node1) == disjoint_set.find(node2)# 示例
disjoint_set_network = DisjointSet(10)
disjoint_set_network.union(0, 1)
disjoint_set_network.union(1, 2)
disjoint_set_network.union(3, 4)print(are_nodes_connected(disjoint_set_network, 0, 2))  # 输出: True
print(are_nodes_connected(disjoint_set_network, 0, 3))  # 输出: False
总结

并查集是一种用于处理集合的高效数据结构,通过路径压缩和按秩合并等优化策略,可以在常数时间内执行合并和查找操作。在Python中,可以通过类似上述示例的代码实现简单而有效的并查集。理解并查集的基本概念、实现方式和应用场景,将有助于更好地应用并查集解决实际问题。

这种数据结构常被用于解决图论中的连通性问题,同时在网络连接、社交网络分析等场景中也有着广泛的应用。在实际问题中,通过并查集,我们能够高效地管理和处理不同元素之间的关系,提高算法的效率和性能。

相关文章:

Python高级数据结构——并查集(Disjoint Set)

Python中的并查集&#xff08;Disjoint Set&#xff09;&#xff1a;高级数据结构解析 并查集是一种用于处理集合的数据结构&#xff0c;它主要支持两种操作&#xff1a;合并两个集合和查找一个元素所属的集合。在本文中&#xff0c;我们将深入讲解Python中的并查集&#xff0…...

pytorch学习9-优化器学习

系列文章目录 pytorch学习1-数据加载以及Tensorboard可视化工具pytorch学习2-Transforms主要方法使用pytorch学习3-torchvisin和Dataloader的使用pytorch学习4-简易卷积实现pytorch学习5-最大池化层的使用pytorch学习6-非线性变换&#xff08;ReLU和sigmoid&#xff09;pytorc…...

MySQL之锁

MySQL之锁 锁是计算机在执行多线程或线程时用于并发访问同一共享资源时的同步机制&#xff0c;MySQL中的锁是在服务器层或者存储引擎层实现的&#xff0c;保证了数据访问的一致性与有效性 MySQL锁可以按模式分类为&#xff1a;乐观锁与悲观锁。 按粒度分可以分为全局锁、表级锁…...

今日现货黄金最新建议

近期现货黄金价格再度逼近历史高位&#xff0c;很多本来在场外观望的投资者&#xff0c;都纷纷希望进场一试身手。然而大涨大跌的行情并不是很适合新手投资者参与&#xff0c;如果大家还没做好技术上的准备&#xff0c;可以多听听正规交易平台的专业人士的意见。 在正式入市之前…...

基于混沌算法的图像加密解密系统

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义&#xff1a; 随着信息技术的迅猛发展&#xff0c;图像的传输和存储已经成为现代社会中不可或缺的一部分。然而&#xff0c;随着互联网的普及和信息的快速传播&am…...

vscode插件离线下载

离线下载插件地址&#xff1a;https://marketplace.visualstudio.com/VSCode...

第二十一章总结

一、网络通信&#xff1a; 1.网络程序设计基础&#xff1a;网络程序设计编写的是与其他计算机进行通信的程序。 1.1局域网与互联网&#xff1a;为了实现两台计算机的通信&#xff0c;必须用一个网络线路连接两台计算机 2.网络协议&#xff1a;网络协议规定了计算机之间连接的…...

查看端口占用并杀死进程

1.安装查看工具 sudo yum install net-tools 2.查看占用情况 netstat -tunlp | grep 8089 3.杀死进程 kill -9 227...

前后端数据传输格式(上)

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 作为后端&#xff0c;写…...

maven的package和install命令有什么区别以及Maven常用命令与GAV坐标与Maven依赖范围与Maven依赖传递与依赖排除与统一声明版本号

maven的package和install命令有什么区别以及Maven常用命令与GAV坐标与Maven依赖范围与Maven依赖传递与依赖排除与统一声明版本号 一: maven的package和install命令有什么区别 一般都与clean命令结合使用 mvn package 生成target目录&#xff0c;编译、测试代码&#xff0c;…...

【动手学深度学习】(六)权重衰退

文章目录 一、理论知识二、代码实现2.1从零开始实现2.2简洁实现 【相关总结】 主要解决过拟合 一、理论知识 1、使用均方范数作为硬性限制&#xff08;不常用&#xff09; 通过限制参数值的选择范围来控制模型容量 通常不限制偏移b 小的意味着更强的正则项 使用均方范数作为柔…...

动手学习深度学习-跟李沐学AI-自学笔记(3)

一、深度学习硬件-CPU和GPU 芯片&#xff1a;Intel or AMD 内存&#xff1a;DDR4 显卡&#xff1a;nVidia 芯片可以和GPU与内存通信 GPU不能和内存通信 1. CPU 能算出每一秒能运算的浮点运算数&#xff08;大概0.15左右&#xff09; 1.1 提升CPU利用率 1.1.1 提升缓存…...

3.2 Puppet 和 Chef 的比较与应用

Puppet 和 Chef 的比较与应用 文章目录 Puppet 和 Chef 的比较与应用Puppet 和 Chef 简介工作原理对比**模块化的重要性**&#xff1a; Puppet 和 Chef 简介 介绍 Puppet 和 Chef 这两个流行的配置管理工具的背景和用途。强调它们的共同目标&#xff1a;实现自动化的系统配置和…...

promise使用示例

下面是一个 Promise 使用示例&#xff0c;通过 Promise 实现异步操作的链式调用&#xff1a; const getUser (userId) > {return new Promise((resolve, reject) > {// 模拟异步请求setTimeout(() > {const users [{ id: 1, name: Alice },{ id: 2, name: Bob },{ …...

一起学docker系列之十四Dockerfile微服务实践

目录 1 前言2 创建微服务模块2.1 **创建项目模块**2.2 **编写业务代码** 3 编写 Dockerfile4 构建 Docker 镜像5 运行 Docker 容器6 测试微服务7 总结8 参考地址 1 前言 微服务架构已经成为现代软件开发中的一种重要方式。而 Docker 提供了一种轻量级、便携式的容器化解决方案…...

Qt Creator 11.0.3同时使用Qt6.5和Qt5.14.2

Qt Creator 11.0.3同时使用Qt6.5和Qt5.14.2 概要方法1.打开Qt Creator中的Kit&#xff0c;这里我直接附上几张截图&#xff0c;不同的版本打开位置可能有所不同&#xff0c;总之最终目的是要打开构建套件&#xff08;Kit&#xff09;2.可以看到构建套件里面有包含了“构建套件K…...

Python中字符串列表的相互转换详解

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com 在Python编程中&#xff0c;经常会遇到需要将字符串列表相互转换的情况。这涉及到将逗号分隔的字符串转换为列表&#xff0c;或者将列表中的元素连接成一个字符串。本文将深入讨论这些情景&#xff0c;并提供丰富…...

09、pytest多种调用方式

官方用例 # content of myivoke.py import sys import pytestclass MyPlugin:def pytest_sessionfinish(self):print("*** test run reporting finishing")if __name__ "__main__":sys.exit(pytest.main(["-qq"],plugins[MyPlugin()]))# conte…...

分布式锁常见实现方案

分布式锁常见实现方案 基于 Redis 实现分布式锁 如何基于 Redis 实现一个最简易的分布式锁&#xff1f; 不论是本地锁还是分布式锁&#xff0c;核心都在于“互斥”。 在 Redis 中&#xff0c; SETNX 命令是可以帮助我们实现互斥。SETNX 即 SET if Not eXists (对应 Java 中…...

26、pytest使用allure解读

官方实例 # content of pytest_quick_start_test.py import allurepytestmark [allure.epic("My first epic"), allure.feature("Quick start feature")]allure.id(1) allure.story("Simple story") allure.title("test_allure_simple_te…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...