当前位置: 首页 > news >正文

代码随想Day24 | 回溯法模板、77. 组合

理论基础 

回溯法和递归不可分割,回溯法是一种穷举的方法,通常需要剪枝来降低复杂度。回溯法有一个选择并退回的过程,可以抽象为树结构,回溯法的模板如下:

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

 77. 组合  

这道题是回溯的经典题目,按照递归三步走:

参数:

在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。

然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。

回溯函数结束条件:

path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,此时用result二维数组,把path保存起来,并终止本层递归。

单层搜索的过程

回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。

77.组合1

如此我们才遍历完图中的这棵树。for循环每次从startIndex开始遍历,然后用path保存取到的节点i。可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

此外:比较重要的剪枝部分:

可以剪枝的地方就在递归中每一层的for循环所选择的起始位置

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。注意代码中i,就是for循环里选择的起始位置。

for (int i = startIndex; i <= n; i++) {

优化过程如下:

  1. 已经选择的元素个数:path.size();

  2. 还需要的元素个数为: k - path.size();

  3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

最终详细代码如下:

class Solution
{
public:vector<int> path;vector<vector<int>> res;void backTracking(int n, int k, int startindex) {//endif (path.size() == k) {res.push_back(path);return;}// backtrackingfor (int i = startindex; i <= n - (k - path.size()) + 1; i++) {path.push_back(i);backTracking(n, k, i + 1);path.pop_back();}}vector<vector<int>> combine(int n, int k) {backTracking(n, k, 1);return res;}
};

相关文章:

代码随想Day24 | 回溯法模板、77. 组合

理论基础 回溯法和递归不可分割&#xff0c;回溯法是一种穷举的方法&#xff0c;通常需要剪枝来降低复杂度。回溯法有一个选择并退回的过程&#xff0c;可以抽象为树结构&#xff0c;回溯法的模板如下&#xff1a; void backtracking(参数) {if (终止条件) {存放结果;return;}…...

搜索与回溯算法②

求0-9的数字可以组成的所有k 位数。 def backtrack(start, path, k, n, results):"""核心函数。:param start: 下一个添加的数字的起始位置:param path: 当前构建的路径&#xff0c;代表一个组合:param k: 组合中所需的数字个数:param n: 可选数字的最大值:par…...

Centos图形化界面封装OpenStack Ubuntu镜像

目录 背景 环境 搭建kvm环境 安装ubuntu虚机 虚机设置 系统安装 登录虚机 安装cloud-init 安装cloud-utils-growpart 关闭实例 删除细节信息 删除网卡细节 使虚机脱离libvirt纳管 结束与验证 压缩与转移 验证是否能够正常运行 背景 一般的镜像文件在上传OpenSt…...

使用Jmeter进行http接口测试怎么做?

前言&#xff1a; 本文主要针对http接口进行测试&#xff0c;使用Jmeter工具实现。 Jmter工具设计之初是用于做性能测试的&#xff0c;它在实现对各种接口的调用方面已经做的比较成熟&#xff0c;因此&#xff0c;本次直接使用Jmeter工具来完成对Http接口的测试。 一、开发接…...

创建腾讯云存储桶---上传图片--使用cos-sdk完成上传

创建腾讯云存储桶—上传图片 注册腾讯云账号https://cloud.tencent.com/login 登录成功&#xff0c;选择右边的控制台 点击云产品&#xff0c;选择对象存储 创建存储桶 填写名称&#xff0c;选择公有读&#xff0c;私有写一直下一步&#xff0c;到创建 选择安全管理&#…...

12.3_黑马MybatisPlus笔记(上)

目录 02 03 04 05 06 07 ​编辑 thinking:system.out::println?​编辑 thinking&#xff1a;list.of? 08 thinking&#xff1a;RequestParam和 ApiParam注解使用&#xff1f; thinking&#xff1a;RequestParam 和PathVariable的区别&#xff1f; ​编辑 ​编…...

智能优化算法应用:基于寄生捕食算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于寄生捕食算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于寄生捕食算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.寄生捕食算法4.实验参数设定5.算法结果6.参考…...

全息图着色器插件:Hologram Shaders Pro for URP, HDRP Built-in

8个新的Unity全息图着色器,具有故障效果,扫描线,网格线,和更多其他效果!与所有渲染管线兼容。 软件包添加了一系列的全息图着色器到Unity。从基本的全息图与菲涅耳亮点,先进的全息图与两种故障效应,扫描线,文体点阵和网格线全息图! 特色全息效果 Basic-支持菲涅耳发光照…...

Python Opencv实践 - 简单的AR项目

这个简单的AR项目效果是&#xff0c;通过给定一张静态图片作为要视频中要替换的目标物品&#xff0c;当在视频中检测到图片中的物体时&#xff0c;通过单应矩阵做投影&#xff0c;将视频中的物体替换成一段视频播放。这个项目的所有素材来自自己的手机拍的视频。 静态图片&…...

Java不可变集合

Java不可变集合 不可变集合&#xff1a;也就是不可以被修改的集合 创建不可变集合的应用场景 ●如果某个数据不能被修改&#xff0c;把它防御性地拷贝到不可变集合中是个很好的实践。 ●当集合对象被不可信的库调用时&#xff0c;不可变形式是安全的。 简单理解&#xff1…...

openGauss学习笔记-146 openGauss 数据库运维-备份与恢复-配置文件的备份与恢复

文章目录 openGauss学习笔记-146 openGauss 数据库运维-备份与恢复-配置文件的备份与恢复146.1 背景信息146.2 前置条件146.3 操作步骤146.4 示例 openGauss学习笔记-146 openGauss 数据库运维-备份与恢复-配置文件的备份与恢复 146.1 背景信息 在openGauss使用过程中&#x…...

一文读懂中间件

前言&#xff1a;在程序猿的日常工作中&#xff0c; 经常会提到中间件&#xff0c;然而大家对中间件的理解并不一致&#xff0c;导致了一些不必要的分歧和误解。“中间件”一词被用来描述各种各样的软件产品&#xff0c;在不同文献中有着许多不同的中间件定义&#xff0c;包括操…...

【编程基础心法】「设计模式系列」让我们一起来学编程界的“兵法”设计模式(序章)

一起来学编程界的“兵法”设计模式&#xff08;序章&#xff09; 设计模式是什么设计模式的概念设计模式的分类创建型模式&#xff08;5种&#xff09;结构型模式&#xff08;7种&#xff09;行为型模式&#xff08;11种&#xff09; 设计模式应用场景工厂模式的实现及应用单例…...

技术阅读周刊第第8️⃣期

技术阅读周刊&#xff0c;每周更新。 历史更新 20231103&#xff1a;第四期20231107&#xff1a;第五期20231117&#xff1a;第六期20231124&#xff1a;第七期 Prometheus vs. VictoriaMetrics (VM) | Last9 URL: https://last9.io/blog/prometheus-vs-victoriametrics/?refd…...

HTML程序大全(2):通用注册模版

一、正常情况效果 二、某项没有填写的效果 三、没有勾选同意项的效果 四、代码 <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>注册</title><style>body {font-family: Arial, sans-serif;background-color…...

【循环结构 for、break、continue高级用法】

在 C++ 中,for 循环是一种常用的循环结构,它用于重复执行代码块直到满足指定的条件。for 循环的基础用法相对简单,而高级用法则涉及更复杂的控制结构和技术。让我们探讨这些用法,并通过一些示例来加深理解。 文章目录 基础用法高级用法实战示例注意事项结合 break 和 conti…...

JAVA网络编程——BIO、NIO、AIO深度解析

I/O 一直是很多Java同学难以理解的一个知识点&#xff0c;这篇帖子将会从底层原理上带你理解I/O&#xff0c;让你看清I/O相关问题的本质。 1、I/O的概念 I/O 的全称是Input/Output。虽常谈及I/O&#xff0c;但想必你也一时不能给出一个完整的定义。搜索了谷哥欠&#xff0c;发…...

Linux高级系统编程-3 进程

概念 进程与程序的区别 程序&#xff1a;一个可执行文件, 占磁盘空间&#xff0c;是静态的 进程&#xff1a;一个程序运行的过程, 占内存&#xff0c;动态的。 单道程序和多道程序 单道程序设计: 所有进程一个一个排队执行。若 A 阻塞&#xff0c; B 只能等待&#xff0…...

ES-ELSER 如何在内网中离线导入ES官方的稀疏向量模型(国内网络环境下操作方法)

ES官方训练了稀疏向量模型&#xff0c;用来支持语义检索。&#xff08;目前该模型只支持英文&#xff09; 最好是以离线的方式安装。在线的方式&#xff0c;在国内下载也麻烦&#xff0c;下载速度也慢。还不如用离线的方式。对于一般的生产环境&#xff0c;基本上也是网络隔离的…...

Excel 使用技巧

Excel 使用技巧 注意&#xff1a; excel 中设计计算的字符尽量使用英文。 拼接两段文字&#xff08;字符串拼接&#xff09; 方法一 在需要计算的单元格上,键入 点击 A1(点击需要拼接的单元格) & C1(点击需要拼接的单元格) 举例: 姓名栏想要拼接 姓 和 名 两列点击姓名这一…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...