python/matlab图像去雾/去雨综述
图像去雾和去雨是计算机视觉领域的两个重要任务,旨在提高图像质量和可视化效果。本文将综述图像去雾和去雨的算法、理论以及相关项目代码示例。
一、图像去雾算法
-
基于暗通道先验的方法:
这是广泛应用于图像去雾的经典算法之一。该方法基于一个观察:自然场景中的大多数像素在至少一个颜色通道上具有非常低的值。通过分析图像的暗通道,可以估计场景的全局大气光照和深度信息,从而去除雾霾。

-
基于物理模型的方法:
这种方法基于图像成像过程中的物理模型,例如散射模型和退化模型。它们通过对图像的特定属性进行建模,如散射模型中的光线散射、传播和吸收等,来恢复原始场景。

def dark_channel(image, patch_size):# 计算图像暗通道min_channel = np.min(image, axis=2)kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (patch_size, patch_size))dark_channel = cv2.erode(min_channel, kernel)return dark_channeldef estimate_atmospheric_light(image, dark_channel, top_percentage):# 估计大气光照值num_pixels = int(dark_channel.size * top_percentage / 100)dark_channel_flat = dark_channel.flatten()indices = dark_channel_flat.argsort()[-num_pixels:]atmospheric_light = np.mean(image.reshape(-1, 3)[indices], axis=0)return atmospheric_lightdef transmission_estimate(image, atmospheric_light, omega, patch_size):# 估计透射率normalized_image = image.astype(np.float64) / atmospheric_lightdark_channel = dark_channel(normalized_image, patch_size)transmission = 1 - omega * dark_channelreturn transmissiondef refine_transmission(image, transmission, epsilon, patch_size):# 优化透射率gray_image = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_BGR2GRAY)transmission_filtered = cv2.guidedFilter(gray_image, transmission, patch_size, epsilon)return transmission_filtereddef recover_scene(image, transmission, atmospheric_light, t0=0.1):# 恢复场景transmission_clipped = np.clip(transmission, t0, 1)recovered_scene = np.zeros_like(image, dtype=np.float64)for i in range(3):recovered_scene[:,:,i] = (image[:,:,i].astype(np.float64) - atmospheric_light[i]) / transmission_clipped + atmospheric_light[i]recovered_scene = np.clip(recovered_scene, 0, 255).astype(np.uint8)return recovered_scene
-
基于深度学习的方法:
近年来,深度学习技术的发展为图像去雾带来了显著的改进。深度学习模型能够从大规模数据中学习图像的特征表示,从而实现更准确的去雾效果。例如,基于生成对抗网络(GAN)的方法结合了生成模型和判别模型,以生成真实感的去雾图像。

二、图像去雨算法 -
基于滤波的方法:
这是最简单的去雨方法之一,通过应用线性或非线性滤波器来平滑图像并去除雨滴。这种方法的局限性在于无法处理复杂的雨滴遮挡情况。 -
基于物理模型的方法:
类似于图像去雾算法,图像去雨也可以基于物理模型进行建模。通过建立雨滴的传播和反射模型,可以预测雨滴的位置和运动轨迹,并从受雨滴遮挡的图像中恢复出清晰的场景。

-
基于深度学习的方法:
同样,深度学习技术在图像去雨任务中也取得了显著的进展。通过训练深度神经网络,可以学习到从受雨滴遮挡的图像中恢复出清晰场景的映射关系。这些网络可以捕捉到雨滴的形状、纹理等特征,并生成去雨后的图像。

三、相关项目代码示例
-
DehazeNet:
这是一个基于深度学习的图像去雾项目,使用卷积神经网络来学习图像的去雾映射。该项目提供了预训练模型和示例代码,可用于去除图像中的雾霾效果。 -
RainNet:
这是一个基于深度学习的图像去雨项目,使用生成对抗网络来学习图像的去雨映射。该项目提供了模型训练代码和测试代码,可用于去除图像中的雨滴效果。
% 读取输入图像
input_image = imread('input.jpg');% 将输入图像转换为灰度图像
gray_image = rgb2gray(input_image);% 应用快速傅里叶变换 (FFT)
fft_image = fftshift(fft2(double(gray_image)));% 创建垂直方向的滤波器
[M, N] = size(gray_image);
filter = ones(M, N);
filter(:, N/2-5:N/2+5) = 0; % 将垂直方向上的频率范围设置为零% 将滤波器应用于频域图像
filtered_fft_image = fft_image .* filter;% 应用逆傅里叶变换
filtered_image = abs(ifft2(ifftshift(filtered_fft_image)));
以上是关于图像去雾和去雨的算法、理论以及相关项目代码示例的综述。这些方法和项目为解决图像质量问题提供了有力的工具和技术,对于改善图像可视化效果具有重要意义。
相关文章:
python/matlab图像去雾/去雨综述
图像去雾和去雨是计算机视觉领域的两个重要任务,旨在提高图像质量和可视化效果。本文将综述图像去雾和去雨的算法、理论以及相关项目代码示例。 一、图像去雾算法 基于暗通道先验的方法: 这是广泛应用于图像去雾的经典算法之一。该方法基于一个观察&…...
Docker+jenkins+gitlab实现持续集成
1.安装环境 服务器ip虚拟机版本192.168.5.132centos7.6192.168.5.152centos7.6 2. 安装docker 安装必要的一些系统工具 yum install -y yum-utils device-mapper-persistent-data lvm2添加软件源信息,要确保centos7能上外网 yum-config-manager --add-repo http:…...
Web前端JS如何获取 Video/Audio 视音频声道(左右声道|多声道)、视音频轨道、音频流数据
写在前面: 根据Web项目开发需求,需要在H5页面中,通过点击视频列表页中的任意视频进入视频详情页,然后根据视频的链接地址,主要是 .mp4 文件格式,在进行播放时实时的显示该视频的音频轨道情况,并…...
MySQL生成UUID并去除-
uuid()函数 uuid() 函数可以使mysql生成uuid,但是uuid中存在-,如下图: 去除uuid的- 默认生成的uuid含有-,我们可以使用replace函数替换掉-,SQL如下 select replace(uuid(),"-","") as uuid;Insert语句中使用UUID 如果…...
包与字符串
包是分类管理的需要,建立包用:package,包中类的引用import 学习使用javaAPI中的字符串类String,学会其成员方法的使用 (必看)eclipse包的分层等级结构设置 因为eclipse的包的结构默认是平行等级的,所以要手…...
【Gradle】mac环境安装Gradle及配置
官网安装说明:Gradle | Installation 由于Gradle运行依赖jvm,所以事先需要安装jdk,并确认你的jdk版本和gradle版本要求的对应关系,这个官网上有说明,但是我试了一下不太准确,供参考,链接如下&a…...
使用C语言操作kafka ---- librdkafka
1 安装librdkafka git clone https://github.com/edenhill/librdkafka.git cd librdkafka git checkout v1.7.0 ./configure make sudo make install sudo ldconfig 在librdkafka的examples目录下会有示例程序。比如consumer的启动需要下列参数 ./consumer <broker> &…...
误用STM32串口发送标志位 “USART_FLAG_TXE” “USART_FLAG_TC”造成的BUG
当你使用串口发送数据时是否出现过这样的情况: 1.发送时第一个字节丢失。 2.发送时出现莫名的字节丢失。 3.各种情况字节丢失。 1.先了解一下串口发送的流程图(手动描绘): 可以假想USART_FLAG_TXE是用于检测"弹仓"&…...
指针(三)
函数指针 定义:整型指针是指向整形的指针,数组指针式指向数组的指针,其实函数指针就是指向函数的指针。 函数指针基础: ()优先级要高于*;一个变量除去了变量名,便是它的变量类型;一个指针变量…...
labelimg遇到的标签修改问题:修改一张图像的标签时,保存后导致classes.txt改变
问题描述:修改一张图像的标签时候, classes.txt 会同步更新,导致重新生成了 classes.txt 但是这个 classes.txt 只有你现在写的那个类别名,以前的没有了。 解决:设置一个 predefined_classes.txt,内容和模…...
Spring Cloud Gateway使用和配置
Spring Cloud Gateway是Spring官方基于Spring 5.0,Spring Boot 2.0和Project Reactor等技术开发的网关,Spring Cloud Gateway旨在为微服务架构提供一种简单而有效的统一的API路由管理方式。Spring Cloud Gateway作为Spring Cloud生态系中的网关ÿ…...
RT-Thread 时钟管理
时钟管理 时钟是非常重要的概念,和朋友出去游玩需要约定时间,完成任务也需要花费时间,生活离不开时间。 操作系统也一样,需要通过时间来规范其任务的执行,操作系统中最小的时间单位是时钟节拍(OS Tick&…...
User: zhangflink is not allowed to impersonate zhangflink
使用hive2连接进行添加数据是报错: [08S01][1] Error while processing statement: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask. User: zhangflink is not allowed to impersonate zhangflink 有些文章说需要修…...
深入理解Sentinel系列-1.初识Sentinel
👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码、Kafka原理、分布式技术原理🔥如果感觉博主的文章还不错的话ÿ…...
vue中字典的使用
1.引入字典 dicts: [order_status,product_type],2.表单中使用 select下拉 <el-form-item label"订单状态" prop"orderStatus"><el-select v-model"form.orderStatus" clearable placeholder"请输入订单状态" :disabled"…...
AWS基于x86 vs Graviton(ARM)的RDS MySQL性能对比
概述 这是一个系列。在前面,我们测试了阿里云经济版(“ARM”)与标准版的性能/价格对比;华为云x86规格与ARM(鲲鹏增强)版的性能/价格对比。现在,再来看看AWS的ARM版本的RDS情况 在2018年&#…...
ESP32 蓝牙音箱无法链接上电脑的解决:此项不起作用,请确保你的蓝牙设备仍可检测到
ESP32 被我加了放大器后通过A2DP链接手机播放一直正常,但是怎么都链接不到电脑,蓝牙设备可以被发现和配对,但是始终无法连接,显示: 此项不起作用,请确保你的蓝牙设备仍可检测到,然后再试一次 …...
会声会影2024软件还包含了视频教学以及模板素材
会声会影2024中文版是一款加拿大公司Corel发布的视频编软件。会声会影2024官方版支持视频合并、剪辑、屏幕录制、光盘制作、添加特效、字幕和配音等功能,用户可以快速上手。会声会影2024软件还包含了视频教学以及模板素材,让用户剪辑视频更加的轻松。 会…...
[Swift]RxSwift常见用法详解
RxSwift 是 ReactiveX API 的 Swift 版。它是一个基于 Swift 事件驱动的库,用于处理异步和基于事件的代码。 GitHub:https://github.com/ReactiveX/RxSwift 一、安装 首先,你需要安装 RxSwift。你可以使用 CocoaPods,Carthage 或者 Swift …...
探索鸿蒙_ArkTs开发语言
ArkTs 在正常的网页开发中,实现一个效果,需要htmlcssjs三种语言实现。 但是使用ArkTs语言,就能全部实现了。 ArkTs是基于TypeScript的,但是呢,TypeScript是基于javascript的,所以ArkTs不但能完成js的工作&a…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
