当前位置: 首页 > news >正文

毕设:《基于hive的音乐数据分析系统的设计与实现》

文章目录

  • 环境启动
  • 一、爬取数据
    • 1.1、歌单信息
    • 1.2、每首歌前20条评论
    • 1.3、排行榜
  • 二、搭建环境
    • 1.1、搭建JAVA
    • 1.2、配置hadoop
    • 1.3、配置Hadoop环境:YARN
    • 1.4、MYSQL
    • 1.5、HIVE(数据仓库)
    • 1.6、Sqoop(关系数据库数据迁移)
  • 三、hadoop配置内存
  • 四、导入数据到hive


环境启动

启动hadoop图形化界面

cd /opt/server/hadoop-3.1.0/sbin/./start-dfs.sh
./start-yarn.sh# 或者
./start-all.sh

启动hive

hive

一、爬取数据

1.1、歌单信息

CREATE TABLE playlist (PlaylistID INT AUTO_INCREMENT PRIMARY KEY,Type VARCHAR(255),Title VARCHAR(255),PlayCount VARCHAR(255),Contributor VARCHAR(255)
);
# _*_ coding : utf-8 _*_
# @Time : 2023/11/15 10:26
# @Author : Laptoy
# @File : 01_playlist
# @Project : finalDesign
import requests
import time
from bs4 import BeautifulSoup
import pymysqldb_connection = pymysql.connect(host="localhost",user="root",password="root",database="music"
)
cursor = db_connection.cursor()headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36'
}types = ['华语', '欧美', '日语', '韩语', '粤语']for type in types:# 按类型获取歌单for i in range(0, 1295, 35):url = 'https://music.163.com/discover/playlist/?cat=' + type + '&order=hot&limit=35&offset=' + str(i)response = requests.get(url=url, headers=headers)html = response.textsoup = BeautifulSoup(html, 'html.parser')# 获取包含歌单详情页网址的标签ids = soup.select('.dec a')# 获取包含歌单索引页信息的标签lis = soup.select('#m-pl-container li')print(len(lis))print('类型', '标题', '播放量', '歌单贡献者', '歌单链接')for j in range(len(lis)):# 标准歌单类型type = type# 获取歌单标题,替换英文分割符title = ids[j]['title'].replace(',', ',')# 获取歌单播放量playCount = lis[j].select('.nb')[0].get_text()# 获取歌单贡献者名字contributor = lis[j].select('p')[1].select('a')[0].get_text()# 输出歌单索引页信息print(type, title, playCount, contributor)insert_query = "INSERT INTO playlist (Type, Title, PlayCount, Contributor) VALUES (%s, %s, %s, %s)"playlist_data = (type, title, playCount, contributor)cursor.execute(insert_query, playlist_data)db_connection.commit()time.sleep(0.1)
cursor.close()
db_connection.close()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


1.2、每首歌前20条评论

CREATE TABLE `comment`  (`song_id` varchar(20),`song_name` varchar(255),`comment` varchar(255),`nickname` varchar(50)
) ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Dynamic;
# _*_ coding : utf-8 _*_
# @Time : 2023/11/15 15:09
# @Author : Laptoy
# @File : ces
# @Project : finalDesign
import requests
from Crypto.Cipher import AES
from lxml import etree
from binascii import b2a_base64
import json
import time
import pymysql
from pymysql.converters import escape_stringheaders = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36'
}
e = '010001'
f = '00e0b509f6259df8642dbc35662901477df22677ec152b5ff68ace615bb7b725152b3ab17a876aea8a5aa76d2e417629ec4ee341f56135fccf695280104e0312ecbda92557c93870114af6c9d05c4f7f0c3685b7a46bee255932575cce10b424d813cfe4875d3e82047b97ddef52741d546b8e289dc6935b3ece0462db0a22b8e7'g = '0CoJUm6Qyw8W8jud'
# 随机值
i = 'vDIsXMJJZqADRVBP'def get_163():# 热歌榜URLtoplist_url = 'https://music.163.com/discover/toplist?id=3778678'response = requests.get(toplist_url, headers=headers)html = response.content.decode()html = etree.HTML(html)namelist = html.xpath("//div[@id='song-list-pre-cache']/ul[@class='f-hide']/li")# 可选择保存到文件# f = open('./wangyi_hotcomments.txt',mode='a',encoding='utf-8')for name in namelist:song_name = name.xpath('./a/text()')[0]song_id = name.xpath('./a/@href')[0].split('=')[1]content = get_hotConmments(song_id)print(song_name, song_id)save_mysql(song_id, song_name, content)# f.writelines(song_id+song_name)# f.write('\n')# f.write(str(content))# f.close()def get_encSecKey():encSecKey = "516070c7404b42f34c24ef20b659add657c39e9c52125e9e9f7f5441b4381833a407e5ed302cac5d24beea1c1629b17ccb86e0d9d57f6508db5fb7a6df660089ac57b093d19421d386101676a1c8d1e312e099a3463f81fbe91f28211f9eccccfbfc64148fdd65e2b9f5fcf439a865b95fb656e36f75091957f0a1d39ca8ddd3"return encSecKeydef get_params(data):first = enconda_params(data, g)second = enconda_params(first, i)return second# 加密params
def enconda_params(data, key):d = 16 - len(data) % 16data += chr(d) * ddata = data.encode('utf-8')aes = AES.new(key=key.encode('utf-8'), IV='0102030405060708'.encode('utf-8'), mode=AES.MODE_CBC)bs = aes.encrypt(data)# b64解码params = b2a_base64(bs).decode('utf-8')# params = b64decode(bs)return paramsdef get_hotConmments(id):# print(id)# 提交的信息data = {'cursor': '-1','offset': '0','orderType': '1','pageNo': '1','pageSize': '20','rid': f'R_SO_4_{id}','threadId': f'R_SO_4_{id}'}post_data = {'params': get_params(json.dumps(data)),'encSecKey': get_encSecKey()}# 获取评论的URLsong_url = 'https://music.163.com/weapi/comment/resource/comments/get?csrf_token=ce10dc34c626dc6aef3e07c86be16d70'response = requests.post(url=song_url, data=post_data, headers=headers)# time.sleep(1)json_dict = json.loads(response.content)# print(json_dict)hotcontent = {}for content in json_dict['data']['hotComments']:content_text = content['content']content_id = content['user']['nickname']hotcontent[content_id] = content_textreturn hotcontent# 保存到MySQL数据库
def save_mysql(song_id, song_name, content):connect = pymysql.Connect(host='localhost',port=3306,user='root',passwd='root',db='music',# charset='utf8mb4')cursor = connect.cursor()# sql = "inster into music_163 velues(%d,'%s','%s','%s')"sql = """INSERT INTO comment(song_id, song_name, comment,nickname)VALUES(%d, '%s', '%s', '%s')"""for nikename in content:data = (int(song_id), escape_string(song_name), escape_string(content[nikename]), escape_string(nikename))print(data)cursor.execute(sql % data)connect.commit()if __name__ == '__main__':get_163()

在这里插入图片描述


1.3、排行榜

CREATE TABLE `chart`  (`Chart` varchar(255),`Rank` varchar(255),`Title` varchar(255),`Times` varchar(255),`Singer` varchar(255)
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
# _*_ coding : utf-8 _*_
# @Time : 2023/11/15 14:20
# @Author : Laptoy
# @File : 02_musicChart
# @Project : finalDesign
from selenium import webdriver
from selenium.webdriver.common.by import By
import pymysql
import timedb_connection = pymysql.connect(host="localhost",user="root",password="root",database="music"
)
cursor = db_connection.cursor()driver = webdriver.Chrome()
ids = ['19723756', '3779629', '2884035', '3778678']
charts = ['飙升榜', '新歌榜', '原创榜', '热歌榜']for id, chart in zip(ids, charts):driver.get('https://music.163.com/#/discover/toplist?id=' + id)driver.switch_to.frame('contentFrame')time.sleep(1)divs = driver.find_elements(By.XPATH, '//*[@class="g-wrap12"]//tr[contains(@id,"1")]')for div in divs:# 榜单类型chart = chart# 标题title = div.find_element(By.XPATH, './/div[@class="ttc"]//b').get_attribute('title')# 排名rank = div.find_element(By.XPATH, './/span[@class="num"]').text# 时长times = div.find_element(By.XPATH, './/span[@class="u-dur "]').text# 歌手singer = div.find_element(By.XPATH, './td/div[@class="text"]/span').get_attribute('title')print(chart, title, rank, times, singer)insert_query = "INSERT INTO chart(chart, title, rank, times,singer) VALUES (%s, %s, %s, %s, %s)"chart_data = (chart, title, rank, times, singer)cursor.execute(insert_query, chart_data)db_connection.commit()time.sleep(1)
cursor.close()
db_connection.close()

二、搭建环境

1.1、搭建JAVA

mkdir /opt/tools
mkdir /opt/servertar -zvxf jdk-8u131-linux-x64.tar.gz -C /opt/server
vim /etc/profile# 文件末尾增加
export JAVA_HOME=/opt/server/jdk1.8.0_131
export PATH=${JAVA_HOME}/bin:$PATHsource /etc/profilejava -version

1、配置免密登录

vim /etc/hosts
# 文件末尾增加
192.168.88.110  [主机名]
ssh-keygen -t rsacd ~/.ssh
cat id_rsa.pub >> authorized_keys
chmod 600 authorized_keys

1.2、配置hadoop

tar -zvxf hadoop-3.1.0.tar.gz -C /opt/server/
# 进入/opt/server/hadoop-3.1.0/etc/hadoop
vim hadoop-env.sh
# 文件添加
export JAVA_HOME=/opt/server/jdk1.8.0_131

vim core-site.xml

<configuration><property><!--指定 namenode 的 hdfs 协议文件系统的通信地址--><name>fs.defaultFS</name><value>hdfs://[主机名]:8020</value></property><property><!--指定 hadoop 数据文件存储目录--><name>hadoop.tmp.dir</name><value>/home/hadoop/data</value></property>
</configuration>

hdfs-site.xml

<configuration><property><!--由于我们这里搭建是单机版本,所以指定 dfs 的副本系数为 1--><name>dfs.replication</name><value>1</value></property>
</configuration>
vim workers
# 配置所有从属节点的主机名或 IP 地址,由于是单机版本,所以指定本机即可:
server

1、关闭防火墙

# 查看防火墙状态
sudo firewall-cmd --state
# 关闭防火墙:
sudo systemctl stop firewalld
# 禁止开机启动
sudo systemctl disable firewalld

2、初始化

cd /opt/server/hadoop-3.1.0/bin
./hdfs namenode -format

在这里插入图片描述

3、配置启动用户

cd /opt/server/hadoop-3.1.0/sbin/
# 编辑start-dfs.sh、stop-dfs.sh,在顶部加入以下内容
# 编辑start-all.sh、stop-all.sh,在顶部加入以下内容
HDFS_DATANODE_USER=root
HDFS_DATANODE_SECURE_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=root

4、启动

cd /opt/server/hadoop-3.1.0/sbin/
./start-dfs.shjps

在这里插入图片描述
5、访问

192.168.88.110:9870

在这里插入图片描述
6、配置环境变量方便启动

vim /etc/profile
export HADOOP_HOME=/opt/server/hadoop-3.1.0
export PATH=$PATH:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
source /etc/profile

1.3、配置Hadoop环境:YARN

# 进入/opt/server/hadoop-3.1.0/etc/hadoop
vim mapred-site.xml
<configuration><property><name>mapreduce.framework.name</name><value>yarn</value></property><property><name>yarn.app.mapreduce.am.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property><property><name>mapreduce.map.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property><property><name>mapreduce.reduce.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property>
</configuration>
vim yarn-site.xml
<configuration><property><!--配置 NodeManager 上运行的附属服务。需要配置成 mapreduce_shuffle 后才可以在Yarn 上运行 MapRedvimuce 程序。--><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property>
</configuration>
cd /opt/server/hadoop-3.1.0/sbin/
# start-yarn.sh stop-yarn.sh在两个文件顶部添加以下内容
YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root
./start-yarn.sh

在这里插入图片描述
在这里插入图片描述


1.4、MYSQL

# 用于存放安装包
mkdir /opt/tools
# 用于存放解压后的文件
mkdir /opt/server

卸载Centos7自带mariadb

# 查找
rpm -qa|grep mariadb
# mariadb-libs-5.5.52-1.el7.x86_64
# 卸载
rpm -e mariadb-libs-5.5.52-1.el7.x86_64 --nodeps
# 创建mysql安装包存放点
mkdir /opt/server/mysql
# 解压
tar xvf mysql-5.7.34-1.el7.x86_64.rpm-bundle.tar -C /opt/server/mysql/
# 安装依赖
yum -y install libaio
yum -y install libncurses*
yum -y install perl perl-devel
# 切换到安装目录
cd /opt/server/mysql/
# 安装
rpm -ivh mysql-community-common-5.7.34-1.el7.x86_64.rpm 
rpm -ivh mysql-community-libs-5.7.34-1.el7.x86_64.rpm 
rpm -ivh mysql-community-client-5.7.34-1.el7.x86_64.rpm 
rpm -ivh mysql-community-server-5.7.34-1.el7.x86_64.rpm
#启动mysql
systemctl start mysqld.service
#查看生成的临时root密码
cat /var/log/mysqld.log | grep password

在这里插入图片描述

# 登录mysql
mysql -u root -p
Enter password:     #输入在日志中生成的临时密码
# 更新root密码 设置为root
set global validate_password_policy=0;
set global validate_password_length=1;
set password=password('root');
grant all privileges on *.* to 'root' @'%' identified by 'root';
# 刷新
flush privileges;
#mysql的启动和关闭 状态查看
systemctl stop mysqld
systemctl status mysqld
systemctl start mysqld
#建议设置为开机自启动服务
systemctl enable mysqld
#查看是否已经设置自启动成功
systemctl list-unit-files | grep mysqld

1.5、HIVE(数据仓库)

# 切换到安装包目录
cd /opt/tools
# 解压到/root/server目录
tar -zxvf apache-hive-3.1.2-bin.tar.gz -C /opt/server/
# 上传mysql-connector-java-5.1.38.jar到下面目录
cd /opt/server/apache-hive-3.1.2-bin/lib

配置文件

cd /opt/server/apache-hive-3.1.2-bin/conf
cp hive-env.sh.template hive-env.sh
vim hive-env.sh
# 加入以下内容
HADOOP_HOME=/opt/server/hadoop-3.1.0
cd /opt/server/apache-hive-3.1.2-bin/conf
vim hive-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><!-- 存储元数据mysql相关配置 /etc/hosts --><property><name>javax.jdo.option.ConnectionURL</name><value> jdbc:mysql://[主机名]:3306/hive?
createDatabaseIfNotExist=true&amp;useSSL=false&amp;useUnicode=true&amp;chara
cterEncoding=UTF-8</value></property><property><name>javax.jdo.option.ConnectionDriverName</name><value>com.mysql.jdbc.Driver</value></property><property><name>javax.jdo.option.ConnectionUserName</name><value>root</value></property><property><name>javax.jdo.option.ConnectionPassword</name><value>root</value></property>
</configuration>

初始化表

cd /opt/server/apache-hive-3.1.2-bin/bin
./schematool -dbType mysql -initSchema

在这里插入图片描述
在这里插入图片描述


1.6、Sqoop(关系数据库数据迁移)

1、拉取sqoop

# /opt/tools
wget https://archive.apache.org/dist/sqoop/1.4.7/sqoop-1.4.7.bin__hadoop-2.6.0.tar.gztar -zxvf sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz -C /opt/server/

2、配置

cd /opt/server/sqoop-1.4.7.bin__hadoop-2.6.0/conf
cp sqoop-env-template.sh sqoop-env.shvim sqoop-env.sh
# 加入以下内容
export HADOOP_COMMON_HOME=/opt/server/hadoop-3.1.0
export HADOOP_MAPRED_HOME=/opt/server/hadoop-3.1.0
export HIVE_HOME=/opt/server/apache-hive-3.1.2-bin

3、加入mysql的jdbc驱动包

cd /opt/server/sqoop-1.4.7.bin__hadoop-2.6.0/lib
# mysql-connector-java-5.1.38.jar

三、hadoop配置内存

修改yarn-site.xml

<configuration><!-- Site specific YARN configuration properties --><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.nodemanager.vmem-pmem-ratio</name><value>4</value></property>
</configuration>

重启

cd /opt/server/hadoop-3.1.0/sbin
./stop-all.sh
./start-all.sh

四、导入数据到hive

1、hive创建数据库

create database music;
use music;

2、hive创建数据表

# -- 将数据当做一列放入表中,后续再使用sql进行分割处理
CREATE TABLE chart_content(content STRING
);
CREATE TABLE playlist_content (content STRING
);

3、hive加载csv文件进hive表

load data local inpath '/opt/data/chart.csv' into table chart_content;
load data local inpath '/opt/data/playlist.csv' into table playlist;

4、创建表

CREATE TABLE `chart`  (`Chart` string,`Rank` string,`Title` string,`Times` string,`Singer` string
);CREATE TABLE `playlist`  (`PlaylistID` string,`Type` string,`Title` string,`PlayCount` string,`Contributor` string
);CREATE TABLE playlist (`PlaylistID` string,`Type` string,`Title` string,`PlayCount` string,`Contributor` string
)
row format delimited
fields terminated by ',';

5、将数据插入表中去掉","

INSERT INTO TABLE `chart`
SELECTsplit(content, ',')[0] AS `Chart`,split(content, ',')[1] AS `Rank`,split(content, ',')[2] AS `Title`,split(content, ',')[3] AS `Times`,split(content, ',')[4] AS `Singer`
FROM `chart_content`;INSERT INTO TABLE `playlist`
SELECTsplit(content, ',')[0] AS `PlaylistID`,split(content, ',')[1] AS `Type`,split(content, ',')[2] AS `Title`,split(content, ',')[3] AS `PlayCount`,split(content, ',')[4] AS `Contributor`
FROM `playlist_content`;

在这里插入图片描述
在这里插入图片描述


SELECTPlaylistID,Type,Title,CAST(PlayCount AS int) AS PlayCount,Contributor
FROM playlist;
SELECTREGEXP_REPLACE(Contributor, '"', '')
FROM playlist;

相关文章:

毕设:《基于hive的音乐数据分析系统的设计与实现》

文章目录 环境启动一、爬取数据1.1、歌单信息1.2、每首歌前20条评论1.3、排行榜 二、搭建环境1.1、搭建JAVA1.2、配置hadoop1.3、配置Hadoop环境&#xff1a;YARN1.4、MYSQL1.5、HIVE(数据仓库)1.6、Sqoop&#xff08;关系数据库数据迁移&#xff09; 三、hadoop配置内存四、导…...

PHP使用HTTP代码示例模板

PHP是一种广泛用于服务器端的编程语言&#xff0c;它提供了许多内置的函数和扩展&#xff0c;以便开发人员能够轻松地处理HTTP请求和响应。在PHP中&#xff0c;您可以使用以下代码示例模板来处理HTTP请求和生成HTTP响应。 php复制代码 <?php // 处理GET请求 if ($…...

头歌题目-数组

任务描述 题目描述:找出具有m行n列二维数组Array的“鞍点”&#xff0c;即该位置上的元素在该行上最大&#xff0c;在该列上最小&#xff0c;其中1<m,n<10。 相关知识&#xff08;略&#xff09; 编程要求 输入 输入数据有多行&#xff0c;第一行有两个数m和n&#…...

C++ vector基本操作

目录 一、介绍 二、定义 三、迭代器 四、容量操作 1、size 2、capacity 3、empty 4、resize 5、reserve 总结&#xff08;扩容机制&#xff09; 五、增删查改 1、push_back & pop_back 2、find 3、insert 4、erase 5、swap 6、operator[] 一、介绍 vector…...

使用SLS日志服务采集Kong网关的日志

一、阿里云SLS 官方的接入文档已比较丰富了&#xff0c;本文不意重复说明此事。 站在使用的角度&#xff0c;以采集Kong的日志为示例&#xff0c;说明我们应该如何治理日志。 说白了&#xff0c;本文是想给你怎么省钱作一个建议&#xff0c;希望不会让你公司也“降本增笑”。…...

TA-Lib学习研究笔记(九)——Pattern Recognition (1)

TA-Lib学习研究笔记&#xff08;九&#xff09;——Pattern Recognition &#xff08;1&#xff09; 0.程序代码 形态识别的函数的应用&#xff0c;通过使用A股实际的数据&#xff0c;验证形态识别函数&#xff0c;用K线显示出现标志的形态走势&#xff0c;由于入口参数基本上…...

基于GAN的多尺度门合并多模态MRI图像合成

Multi-Modal MRI Image Synthesis via GAN With Multi-Scale Gate Mergence 基于GAN的多尺度门合并多模态MRI图像合成背景贡献实验方法生成器gate mergence (GM) strategy&#xff08;门控融合策略&#xff09;判别器 损失函数Thinking 基于GAN的多尺度门合并多模态MRI图像合成…...

浅谈https

1.网络传输的安全性 http 协议&#xff1a;不安全&#xff0c;未加密https 协议&#xff1a;安全&#xff0c;对请求报文和响应报文做加密 2.对称加密与非对称加密 2.1 对称加密 特点&#xff1a; 加解密使用 相同 秘钥 高效&#xff0c;适用于大量数据的加密场景 算法公开&a…...

计算两个结构的差

平面上有6个点&#xff0c;以6a1的方式运动 1 1 1 1 - - - 1 - - - 1 现在有一个点逃逸&#xff0c;剩下的5个点将如何运动&#xff1f; 2 2 2 3 - - - 3 - - - 3 将6a1的6个点减去1个点&#xff0c;只有两种可能&#xff0c;或者变成5a2&#xff0c…...

class037 二叉树高频题目-下-不含树型dp【算法】

class037 二叉树高频题目-下-不含树型dp【算法】 code1 236. 二叉树的最近公共祖先 // 普通二叉树上寻找两个节点的最近公共祖先 // 测试链接 : https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-tree/ package class037;// 普通二叉树上寻找两个节点的最近…...

使用cpolar完成内网穿刺

cpolar官网上有一句评论&#xff1a;cpolar是用过最简单的内网穿刺工具&#xff01; 实际体验下来&#xff0c;cpolar确实是能够非常简单地实现内网穿刺 先说弊端&#xff0c;免费版的cpolar提供的穿刺地址&#xff0c;有效期为一天&#xff0c;进程连接数有限&#xff0c;如…...

git的使用:基础配置和命令行

前言 代码管理工具,任何开发都离不开的话题。 到了任何公司,第一件事肯定是配置个人的电脑。主要就是三点,配置对应的开发环境,配置各类开发工具和配置git等代码管理工具拉取代码。 这篇文章主要是git的配置和最常用(我指的是最常用)的命令行使用 git基础配置 git的安装 …...

若依微服务项目整合rocketMq

原文链接&#xff1a;ttps://mp.weixin.qq.com/s/IYdo_suKvvReqCiEKjCeHw 第一步下载若依项目 第二步安装rocketMq&#xff08;推荐在linux使用docker部署比较快&#xff09; 第二步新建一个生产者模块儿&#xff0c;再建一个消费者模块 第四步在getway模块中配置接口映射规…...

连接服务器的ssh终端自动断开解放方法

在Linux中&#xff0c;SSH连接在一段时间内没有活动时可能会自动断开&#xff0c;这是为了安全性考虑的一种默认行为&#xff0c;以防止未经授权的访问。这个时间限制通常由SSH服务器的配置决定。你可以通过以下几种方式来处理这个问题&#xff1a; 1.使用SSH配置文件&#xf…...

Windows+WSL开发环境下微服务注册(Consul)指定IP

Win11下安装一个WSL2&#xff0c;做开发环境&#xff0c;简直是爽到不要不要的&#xff0c;相当于既有Windows下的完善生态&#xff0c;又有linux的便利。特别是&#xff0c;在linux下运行的服务端口号&#xff0c;完全和windows是相通的&#xff0c;直接在windows下浏览访问&a…...

通过K8S安装人大金仓数据库

1. 离线下载镜像&#xff0c;请点击 2. 官网下载镜像 https://www.kingbase.com.cn/xzzx/index.htm&#xff0c;根据自己的需求下载对应版本。 3. K8S需要的yaml清单 cat > kingbase.yaml << EOF apiVersion: apps/v1 kind: Deployment metadata:name: kingbase-…...

正则表达式(3):入门

正则表达式&#xff08;3&#xff09;&#xff1a;入门 小结 本博文转载自 从这篇文章开始&#xff0c;我们将介绍怎样在Linux中使用”正则表达式”&#xff0c;如果你想要学习怎样在Linux中使用正则表达式&#xff0c;这些文章就是你所需要的。 在认识”正则表达式”之前&am…...

《系统架构设计师教程(第2版)》第2章-计算机系统基础知识-01-计算机硬件

文章目录 1. 计算机系统概述2. 计算机硬件2.1 处理器(CPU)2.2 存储器2.2.1 概述2.2.2 按硬件结构分类2.2.3 按与处理器距离分2.3 总线(Bus)2.3.1 概念2.3.2 分类2.3.3 串行总线和并行总线2.4 接口2.4.1 概念2.4.2 常见接口2.5 外部设备1. 计算机系统概述 #mermaid-svg-IcU0sR…...

用友NC word.docx接口存在任意文件读取漏洞

声明 本文仅用于技术交流&#xff0c;请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;文章作者不为此承担任何责任。 一、产品介绍 用友 NC Cloud&#xff0c;大型企业数字化平台&#xff…...

【离散数学】——期末刷题题库(等价关系与划分)

&#x1f383;个人专栏&#xff1a; &#x1f42c; 算法设计与分析&#xff1a;算法设计与分析_IT闫的博客-CSDN博客 &#x1f433;Java基础&#xff1a;Java基础_IT闫的博客-CSDN博客 &#x1f40b;c语言&#xff1a;c语言_IT闫的博客-CSDN博客 &#x1f41f;MySQL&#xff1a…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...