当前位置: 首页 > news >正文

YOLOv5结合BiFPN,如何替换YOLOv5的Neck实现更强的检测能力?

一、BiFPN是什么?
1、什么是BiFPN
BiFPN是一种基于特征金字塔网络(FPN)和双向特征金字塔网络(BiFPN)的对象检测神经网络结构,它被用于提高目标检测的准确度和速度。在目标检测领域,FPN用于将不同分辨率的特征图进行融合,以便更好地捕捉对象的不同尺度和细节。然而,FPN只是在单向上进行融合,可能会导致低分辨率的特征图被忽略或过度压缩。因此,BiFPN被引入,以便更好地保留低分辨率特征图的细节信息。
在这里插入图片描述
BiFPN采用了双向金字塔结构,可以同时进行向上和向下的特征融合。通过不断地迭代,BiFPN可以有效地提高特征图的质量,并捕捉对象的多尺度信息。BiFPN中使用的自适应特征选择机制可以自动确定哪些特征需要进一步融合,哪些不需要。

2、BiFPN的优势
在这里插入图片描述
BiFPN相较于其他结构有以下优势:

高效:BiFPN不仅可以提高目标检测的准确度,还可以在不增加过多计算成本的情况下提高速度。
灵活:BiFPN能够适应不同的输入分辨率和目标大小,可用于各种不同的目标检测任务。
多尺度信息:BiFPN可以捕捉到多尺度的对象信息,并保留低分辨率特征图的细节信息。
二、为什么要用BiFPN替换YOLOv5的Neck?
1、YOLOv5原有的Neck存在的问题
在这里插入图片描述
在YOLOv5的网络结构中,Neck部分主要由三个部分构成,即SPP、PAN和CSP。其中,PAN是整个Neck部分中最重要的一个部分,它可以将来自不同特征层的信息融合在一起,从而提高检测精度。

但是,PAN也存在一些问题,具体如下:

需要大量计算:由于PAN需要对不同特征层的信息进行融合,所以需要进行大量的计算。这不仅会增加训练和推理的时间成本,还会增加模型的计算复杂度,降低了模型的效率。
容易产生过拟合:由于PAN会将来自不同特征层的信息融合在一起,因此很容易产生过拟合的情况。当模型的训练数据不足或者训练数据中存在噪声时,就容易产生过拟合,从而导致检测结果不准确。
不够灵活:PAN是基于金字塔结构的,因此对输入分辨率和目标大小比较敏感,不够灵活。这意味着当输入分辨率和目标大小发生变化时,PAN需要重新训练,从而降低了模型的适用性。
2、BiFPN的适用场景
目标检测算法中的Neck(也称为特征融合层)是连接主干网络与检测头的关键组件。它能够将来自不同层级的特征图融合成更加丰富的特征,提供更全面的信息给检测头,从而提高目标检测算法的准确率。然而,传统的Neck存在一些问题,如融合不充分、计算量大等。针对这些问题,BiFPN成为了目标检测领域的一种热门的Neck结构,下面将对BiFPN的适用场景进行详细介绍。

(1)高效地利用不同分辨率的特征图

目标检测算法中,不同层级的特征图通常具有不同的分辨率,这些特征图提供了不同尺度的信息。在传统的Neck结构中,常常只选择其中一个分辨率的特征图作为输入,丢弃其他的特征图,这样会造成信息的损失。而BiFPN通过对不同分辨率的特征图进行多层级的融合,可以充分地利用不同分辨率的特征图提供的信息。另外,BiFPN通过自适应的权重调整机制,可以自动学习到每个特征图对最终的检测结果的重要性,从而更加精确地融合特征图。

(2)提高模型对特征细节的感知能力

在目标检测算法中,对于一些小目标或者遮挡严重的目标,需要模型有更强的特征细节感知能力才能进行准确的检测。而传统的Neck结构由于缺乏多层级的信息融合机制,常常无法充分地利用不同层级的特征图提供的信息,导致对目标细节的感知能力较弱。BiFPN通过对不同层级的特征图进行多次的信息融合,可以增强模型对特征细节的感知能力,从而提高检测算法的准确率。

(3)可以适用于不同的网络架构

BiFPN作为一种通用的特征融合结构,可以应用于不同的目标检测网络架构中。例如,它可以作为骨干网络EfficientNet的Neck结构,用于目标检测任务。另外,它也可以作为YOLOv5的Neck结构,提高YOLOv5在目标检测任务上的性能。

除此之外,BiFPN还可以与其他网络结构相结合,以满足不同的应用需求。例如,在一些特定的目标检测任务中,我们可能需要更深、更复杂的网络结构来提高检测性能,而这种情况下,我们可以将BiFPN与其他特征提取网络结构相结合,以构建更加强大的目标检测网络。

三、如何在YOLOv5中实现BiFPN
1、下载并替换BiFPN代码
首先,需要从GitHub上下载EfficientDet-Pytorch代码库,该库是一个基于PyTorch的EfficientDet实现,其中包含了BiFPN的实现。我们可以在该代码库中找到effdet文件夹,并将其中的bifpn.py文件拷贝到YOLOv5代码库的models文件夹中,用于替换原有的Neck实现。

2、修改配置文件
接下来,需要修改YOLOv5的配置文件,将Neck配置修改为BiFPN。

具体步骤如下:

打开YOLOv5的配置文件,通常为yolov5s.yaml,可以在YOLOv5代码库的models文件夹中找到该文件;
找到Neck配置,通常为如下代码段:

YOLOv5 neck

neck:

FPN or PAN, None for YOLOv3

type: FPN

in_channels: [256, 512, 1024]

out_channels: 256

将type字段的值修改为BiFPN,并将in_channels和out_channels字段的值根据实际需要进行调整,通常情况下可以保持默认值不变;
保存配置文件。
3、遇到的问题及解决方法
在实现BiFPN时,可能会遇到以下问题:

(1)缺少依赖包

如果在执行上述代码时出现缺少依赖包的错误,可以使用以下命令安装依赖包:

!pip install -r requirements.txt
(2)BiFPN的运行速度较慢

由于BiFPN比传统的Neck结构更加复杂,因此可能会导致模型的运行速度较慢。为了解决这个问题,我们可以使用以下方法:

使用GPU进行训练和推理
减少堆叠BiFPN的数量
调整epsilon值
四、BiFPN超参数调整
超参数是指在模型训练过程中需要手动设定的参数,如学习率、批大小等。在使用BiFPN时,需要对一些超参数进行调整以达到更好的效果。

1、学习率
学习率是模型训练过程中最为重要的超参数之一,它决定了模型在每一次迭代中更新参数的速度。在使用BiFPN时,需要根据实际情况对学习率进行调整。一般来说,可以先设置一个较大的学习率,然后通过观察训练损失的变化来调整学习率的大小。如果损失没有下降,说明学习率太大,需要减小学习率;如果损失下降缓慢,说明学习率太小,需要增大学习率。
在这里插入图片描述
下面是使用PyTorch进行学习率调整的示例代码:

import torch.optim as optim

定义模型和损失函数

model = …
criterion = …

定义优化器和初始学习率

optimizer = optim.SGD(model.parameters(), lr=0.1)

定义学习率调整器,每30个epoch将学习率除以10

scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)

训练模型

for epoch in range(num_epochs):
for batch_idx, (data, target) in enumerate(train_loader):
# 前向传播、计算损失和反向传播

    # 更新参数optimizer.step()# 调整学习率scheduler.step()# 在验证集上测试模型,并记录损失和准确率
...

这里使用了optim.lr_scheduler.StepLR调整学习率,该调整器每隔一定步数将学习率乘以一个指定的因子(这里是0.1),从而实现学习率的下降。step_size参数指定了学习率下降的步数,这里是每30个epoch下降一次。如果损失没有下降,可以考虑将gamma参数设为一个更小的值,以减缓学习率的下降速度。如果损失下降缓慢,可以将gamma参数设为一个更大的值,以加速学习率的下降速度。

2、批大小
批大小是指在每一次模型训练中使用的样本数。批大小的设置通常需要平衡内存限制和训练效果。在使用BiFPN时,需要根据GPU内存大小和模型复杂度来确定合适的批大小。一般来说,批大小可以设置为32或64。
在这里插入图片描述

这里是一个示例代码,用于在训练过程中设置批大小为64:

定义训练批次大小

batch_size = 64

创建训练数据生成器

train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)

train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=‘binary’)
在上述代码中,我们使用ImageDataGenerator从训练数据目录中读取图像数据,并将每个批次的大小设置为64。注意,批大小需要根据训练数据的数量和GPU内存大小来设置,以达到最佳的训练效果。

3、正则化参数
正则化是防止模型过拟合的一种常用技术,通过在损失函数中引入正则项来约束模型的复杂度。在使用BiFPN时,需要根据实际情况调整正则化参数的大小。一般来说,可以先将正则化参数设为较小的值,然后通过观察训练损失和验证损失的变化来调整正则化参数的大小。
在这里插入图片描述
这里是一个使用PyTorch实现L2正则化的示例代码:

import torch.nn as nn

class Model(nn.Module):
def init(self, regularization=0.001):
super(Model, self).init()
self.regularization = regularization
self.fc1 = nn.Linear(10, 5)
self.fc2 = nn.Linear(5, 1)

def forward(self, x):x = self.fc1(x)x = nn.functional.relu(x)x = self.fc2(x)return xdef loss(self, y_pred, y_true):l2_regularization = 0.for param in self.parameters():l2_regularization += torch.norm(param, 2)return nn.functional.mse_loss(y_pred, y_true) + self.regularization * l2_regularization

在这个示例中,我们使用L2正则化对模型的权重进行约束。在模型的构造函数中,我们定义了一个名为regularization的参数,它控制了正则化的强度。在forward方法中,我们使用了PyTorch提供的nn.functional.relu函数作为激活函数,并使用nn.Linear定义了两个全连接层。在loss方法中,我们首先计算了所有参数的L2范数之和,并将其乘以正则化参数,然后将其添加到均方误差损失中,得到最终的损失函数。

要使用这个模型进行训练,我们可以使用以下代码:

import torch.optim as optim

model = Model(regularization=0.001)
optimizer = optim.Adam(model.parameters(), lr=0.001)

for epoch in range(num_epochs):
for x, y in data_loader:
y_pred = model(x)
loss = model.loss(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
在这个示例中,我们使用Adam优化器对模型进行训练。在每一个训练迭代中,我们首先通过调用模型的loss方法计算出损失,然后使用优化器的zero_grad方法清除梯度,并调用backward方法计算梯度,最后使用step方法更新模型的参数。

相关文章:

YOLOv5结合BiFPN,如何替换YOLOv5的Neck实现更强的检测能力?

一、BiFPN是什么? 1、什么是BiFPN BiFPN是一种基于特征金字塔网络(FPN)和双向特征金字塔网络(BiFPN)的对象检测神经网络结构,它被用于提高目标检测的准确度和速度。在目标检测领域,FPN用于将不同…...

3.PyTorch——常用神经网络层

import numpy as np import pandas as pd import torch as t from PIL import Image from torchvision.transforms import ToTensor, ToPILImaget.__version__2.1.13.1 图像相关层 图像相关层主要包括卷积层(Conv)、池化层(Pool)…...

状态机的练习:按键控制led灯

设计思路: 三个按键控制led输出。 三个按键经过滤波(消抖),产生三个按键标志信号。 三个led数据的产生模块(流水,跑马,闪烁模块),分别产生led信号。 这六路信号(三路按键信号&am…...

看图学源码之 CopyOnWriteArraySet源码分析

基本介绍 使用内部CopyOnWriteArrayList进行所有操作的Set 特点 它最适合以下应用程序:集合大小通常较小、只读操作的数量远远多于可变操作,并且您需要在遍历期间防止线程之间的干扰。它是线程安全的。突变操作( add 、 set 、 remove等&…...

almaLinux centos8 下载ffmpeg离线安装包、离线安装

脚本 # 添加RPMfusion仓库 sudo yum install https://download1.rpmfusion.org/free/el/rpmfusion-free-release-8.noarch.rpm wget -ymkdir -p /root/ffmpeg cd /root/ffmpegwget http://rpmfind.net/linux/epel/7/x86_64/Packages/s/SDL2-2.0.14-2.el7.x86_64.rpmyum instal…...

CSS3 属性: transition过渡 与 transform动画

CSS3 提供了很多强大的功能,使开发人员可以创建更加吸引人的视觉效果,而不需要依赖于 JavaScript 或 Flash。其中,transition 和 transform 是两个常用的属性,它们分别用于创建平滑的过渡效果和元素的变形效果。下面我们将详细介绍…...

TCP通讯

第二十一章 网络通信 本章节主要讲解的是TCP和UDP两种通信方式它们都有着自己的优点和缺点 这两种通讯方式不通的地方就是TCP是一对一通信 UDP是一对多的通信方式 接下来会一一讲解 TCP通信 TCP通信方式呢 主要的通讯方式是一对一的通讯方式,也有着优点和缺点 …...

(NeRF学习)3D Gaussian Splatting Instant-NGP

学习参考: 3D Gaussian Splatting入门指南【五分钟学会渲染自己的NeRF模型,有手就行!】 三维重建instant-ngp环境部署与colmap、ffmpeg的脚本参数使用 一、3D Gaussian Splatting (一)3D Gaussian Splatting环境配置…...

uni-app 微信小程序之好看的ui登录页面(三)

文章目录 1. 页面效果2. 页面样式代码 更多登录ui页面 uni-app 微信小程序之好看的ui登录页面(一) uni-app 微信小程序之好看的ui登录页面(二) uni-app 微信小程序之好看的ui登录页面(三) uni-app 微信小程…...

Android 默认打开应用的权限

有项目需要客户要安装第三方软件,但是要手动点击打开权限,就想不动手就打开。 //安装第三方软件,修改方式 frameworks\base\services\core\java\com\android\server\pm\PackageManagerService.java //找到如下源码: //有三种方…...

2023年广东工业大学腾讯杯新生程序设计竞赛

E.不知道叫什么名字 题意:找一段连续的区间,使得区间和为0且区间长度最大,输出区间长度。 思路:考虑前缀和,然后使用map去记录每个前缀和第一次出现的位置,然后对数组进行扫描即可。原理:若 s …...

FFmpeg开发笔记(六)如何访问Github下载FFmpeg源码

学习FFmpeg的时候,经常要到GitHub下载各种开源代码,比如FFmpeg的源码页面位于https://github.com/FFmpeg/FFmpeg。然而国内访问GitHub很不稳定,经常打不开该网站,比如在命令行执行下面的ping命令。 ping github.com 上面的ping结…...

SpringCloud | Dubbo 微服务实战——注册中心详解

前言 「作者主页」:雪碧有白泡泡 「个人网站」:雪碧的个人网站 |Eureka,Nacos,Consul,Zookeeper在Spring Cloud和Dubbo中实战 引言 在项目开发过程中,随着项目不断扩大,也就是业务的不断增多,我们将采用集群&#xf…...

PostGIS学习教程十一:投影数据

PostGIS学习教程十一:投影数据 地球不是平的,也没有简单的方法把它放在一张平面纸地图上(或电脑屏幕上),所以人们想出了各种巧妙的解决方案(投影)。 每种投影方案都有优点和缺点,一…...

jQuery ajax读取本地json文件 三级联动下拉框

步骤 1:创建本地JSON文件 {"departments": [{"name": "会计学院","code": "052"},{"name": "金融学院","code": "053"},{"name": "财税学院",&qu…...

Kubernetes(K8s 1.27.x) 快速上手+实践,无废话纯享版(视频笔记)

视频源:1.03-k8s是什么?_哔哩哔哩_bilibili 1 基础知识 1.1 K8s 有用么? K8s有没有用 K8s要不要学? 参考资料: https://www.infoq.com/articles/devops-and-cloud-trends-2022/?itm_sourcearticles_about_InfoQ-trends-report…...

深度学习实战66-基于计算机视觉的自动驾驶技术,利用YOLOP模型实现车辆区域检测框、可行驶区域和车道线分割图

大家好,我是微学AI,今天给大家介绍一下深度学习实战66-基于计算机视觉的自动驾驶技术,利用YOLOP模型实现车辆区域检测框、可行驶区域和车道线分割图。本文我将介绍自动驾驶技术及其应用场景,并重点阐述了基于计算机视觉技术下的自动驾驶。自动驾驶技术是一种利用人工智能和…...

Stable Diffusion 系列教程 - 1 基础准备(针对新手)

使用SD有两种方式: 本地: 显卡要求:硬件环境推荐NVIDIA的具有8G显存的独立显卡,这个显存勉勉强强能摸到门槛。再往下的4G可能面临各种炸显存、炼丹失败、无法生成图片等各种问题。对于8G显存,1.0模型就不行&#xff0…...

听GPT 讲Rust源代码--src/tools(8)

File: rust/src/tools/rust-analyzer/crates/ide-assists/src/handlers/add_missing_match_arms.rs 在Rust源代码中,rust-analyzer是一个Rust编程语言的语言服务器。它提供了代码补全、代码重构和代码导航等功能来帮助开发者提高编码效率。 在rust-analyzer的代码目…...

Linux硬链接和软连接是什么?

在Linux操作系统中,文件管理是一个基本且重要的概念。其中,软链接(Symbolic Link)和硬链接(Hard Link)是文件系统中两种不同类型的链接方式,它们在文件管理和操作中扮演着重要的角色。软链接 软…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​,覆盖应用全生命周期测试需求,主要提供五大核心能力: ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益(IG) 分类器设计贝叶斯理论:线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别, 有单标签多类别文本分类和多…...

第八部分:阶段项目 6:构建 React 前端应用

现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...

32单片机——基本定时器

STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...